首页|基于多模块的遥感影像建筑物提取方法

基于多模块的遥感影像建筑物提取方法

扫码查看
高分辨率遥感影像建筑物提取是遥感影像解译的一个重要研究方向。针对传统提取方法中小型建筑物容易丢失和大型建筑物边界模糊问题,以Unet为基础,提出一种基于多模块建筑物提取网络(MM-Unet)。首先在网络的编码和解码部分引入多尺度特征组合模块(MFCM)以获取并补充更多的空间信息。之后在解码器末端加入多尺度特征增强模块(MFEF)以增强多尺度特征的提取。在跳跃连接完成后引入双重注意力模块(DAM),使网络能够自适应地学习通道和空间位置的特征重要性,减小不同深度特征的差异。为了验证所提网络的有效性,分别在空间分辨率为1 m、0。3 m、0。09 m的Massachusetts、WHU以及Vaihingen建筑物数据集上进行实验,MM-Unet的交并比分别达到73。42%、90。11%和85。21%,相比于Unet分别提高2。21个百分点、1。25个百分点和1。55个百分点。结果表明,MM-Unet对于不同尺度的建筑物表现出较高的提取精度和较强的泛化能力。
Building Extraction from Remote Sensing Image Based on Multi-Module
Building extraction from high-resolution remote sensing imagery is an important research direction for the interpretation of remote sensing imagery.To address the issues of small buildings easily lost and large buildings with blurred boundaries by traditional extraction methods,this paper proposes a multi-module building extraction U-shaped network(MM-Unet)based on Unet.First,Multi-scale feature combination module(MFCM)is introduced in the encoder and decoder sections of the network to obtain and supplement more spatial information.Then,multi-scale feature enhancement module(MFEF)is incorporated at the end of the decoder to enhance the extraction of multi-scale features.After the skip connections,the dual attention module(DAM)is introduced to adaptively learn the feature importance of channel and spatial positions,thereby reducing the differences among features at different depths.In order to validate the effectiveness of the network,experiments are conducted on Massachusetts,WHU,and Vaihingen building datasets with spatial resolutions of 1 m,0.3 m,and 0.09 m respectively.and the intersection and union ratio of MM-Unet reach 73.42%,90.11%,and 85.21%,compared to Unet,increased by 2.21 percentage points,1.25 percentage points,and 1.55 percentage points.These results demonstrate that MM-Unet shows high extraction accuracy and strong generalization ability on buildings of various scales.

remote sensing imagebuilding extractionmulti-scaleattention mechanismfeature combination

明兴涛、杨德宏

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650093

遥感影像 建筑物提取 多尺度 注意力机制 特征组合

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(4)
  • 23