首页|结合注意力机制的双流卷积自编码高光谱解混方法

结合注意力机制的双流卷积自编码高光谱解混方法

扫码查看
针对基于卷积自编码进行空-谱联合的高光谱解混方法中,过度引入像元光谱之间的空间相关性导致丰度过于平滑的现象,提出一种结合注意力机制的双流卷积自编码高光谱解混方法(DSCU-Net)。首先,利用双流卷积网络分别提取高光谱图像的空间特征和光谱特征;其次,为了确保空间特征和光谱特征之间的平衡性,引入通道注意力机制对提取到的空间特征进行重加权,并对光谱特征和重加权后的空间特征进行融合;最后,使用融合后的特征进行高光谱图像重构,并将重构结果送入解混网络的主干网络中进行光谱解混。通过最小化两次重构误差进行解混网络的训练。为了验证所提方法的性能,在两个真实数据集上进行实验,并对复杂场景下算法的性能表现进行分析。结果表明,DSCU-Net能够有效减少过度引入空间相关性造成丰度过于平滑的现象,具有更好的解混性能。
Dual-Stream Convolutional Autoencoding Network for Hyperspectral Unmixing using Attention Mechanism
In this paper,a dual-stream convolutional autoencoding network for hyperspectral unmixing with attention mechanism(DSCU-Net)is proposed to address the issue of excessively smooth abundance maps caused by excessive incorporation of spatial correlations during pixel spectra in hyperspectral unmixing using a convolution-based autoencoding network.First,the spatial and spectral features of the hyperspectral images are extracted using a dual-stream convolution network.Second,the extracted spatial features are reweighed using a channel attention mechanism and fused with the spectral features to ensure a balance between the spatial and spectral features.Finally,the fusion features are used to reconstruct the hyperspectral image.Furthermore,these features are sent to the backbone in the unmixing network for hyperspectral unmixing.The entire unmixing network is trained by minimizing the two reconstruction errors.Additionally,experiments were conducted on two real datasets to evaluate the performance of the proposed method.The performance of the methods was also analyzed in complex scenarios.The results show that the proposed DSCU-Net can effectively overcome the fuzziness of abundance details because of the excessive introduction of spatial correlation.Moreover,the proposed method has a better unmixing performance.

remote sensinghyperspectral unmixingconvolutional autoencoderchannel attention mechanismdual-stream structure

苏晓通、郭宝峰、尤靖云、吴文豪、许张弛

展开 >

杭州电子科技大学自动化学院,浙江 杭州 310018

遥感 高光谱解混 卷积自编码器 通道注意力机制 双流结构

国家自然科学基金杭州电子科技大学研究生科研创新基金

61375011GK228810299187

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(4)
  • 26