首页|基于融合和细化机制的光学遥感图像去云雾算法

基于融合和细化机制的光学遥感图像去云雾算法

Algorithm for Cloud Removal from Optical Remote Sensing Images Based on the Mechanism of Fusion and Refinement

扫码查看
光学遥感图像广泛应用于天气预报、环境监测和海洋监管等领域.光学传感器拍摄的图像受大气条件和气候因素影响较大,云雾遮挡可导致图像内容丢失、对比度下降和颜色失真等一系列问题.基于此,提出一种基于融合和细化机制的光学遥感图像去云雾算法,实现高质量的单张遥感图像云雾去除.云雾去除网络基于融合和细化机制实现含云雾图与无云雾图的转换.其中,采用融合机制的多尺度云雾特征融合金字塔在不同尺度空间上提取云雾特征并进行融合,采用细化机制的多尺度云雾边缘特征细化单元对云雾的边缘特征进行细化加工,进而重构出清晰的无云图像.采用对抗学习策略,判别网络对特征进行自适应校正并将云雾特征分离出来,从而得到更准确的判别结果,有利于网络生成逼真的云雾去除结果.在开源数据集上选取5种算法进行对比实验,实验结果表明,所提算法云雾去除效果较优,没有产生颜色失真和伪影等现象.在薄云测试集上,所提算法的结构相似性(SSIM)和峰值信噪比(PSNR)分别超过第二名约11.9%和15.0%,在厚云测试集上,所提算法的SSIM和PSNR分别超过第二名约9.3%和9.9%.
Optical images obtained through remote sensing are widely used in weather forecasting,environmental monitoring,and marine supervision.However,the images captured by optical sensors are adversely affected by the atmospheric conditions and weather;cloud covering also leads to content loss,contrast reduction,and color distortion of the images.In this paper,a cloud removal algorithm for optical remote sensing images is proposed.The algorithm is based on the mechanism of fusion and refinement and is designed to achieve high quality cloud removal for a single remote sensing image.A cloud removal network,based on the mechanism of fusion and refinement,implements a transform from cloudy images to cloud-free images.A multiscale,cloud feature fusion pyramid with a fusion mechanism extracts and fuses the cloud features from different space scales.A multiscale,cloud-edge feature refinement unit with a refinement mechanism refines the edge features of the cloud and reconstructs the clear,cloud-free image.This paper adopts an adversarial learning strategy.The discriminator network adaptively corrects the features and separates out the cloud features for more accurate discrimination,and makes the network generate realistic cloud removal results.The experiments were conducted on an open-source dataset and the results were compared with those of five competing algorithms.A qualitative analysis of the experimental results shows that the proposed algorithm performs better than the other five and removes the cloud without color distortion and artifacts.Further,structural similarity and peak signal-to-noise ratio of the proposed algorithm exceeds those of the second-placed algorithm by 11.9%and 15.0%,respectively,on a thin cloud test set,and by 9.3%and 9.9%,respectively,on a heavy cloud test set.

optical remote sensingcloud removalimage fusionimage refinementadversarial learning

王晓宇、刘宇航、张严

展开 >

航天东方红卫星有限公司,北京 100094

光学遥感 云雾去除 图像融合 图像细化 对抗学习

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(4)
  • 21