首页|基于深度动态语义关联的短视频事件检测

基于深度动态语义关联的短视频事件检测

扫码查看
现如今,短视频事件检测展现出广阔的应用前景。现有的事件检测研究普遍缺乏对关键帧重要性程度的考虑,且多是针对事件的显性语义进行学习,忽略了潜在语义及其相关性的学习在短视频事件检测中的作用。针对上述问题,提出了一种基于深度动态语义关联的短视频事件检测方法。首先,设计了帧重要性评估模块来获得具有区分度的帧重要性分数,其内嵌的变分自编码器和生成对抗网络联合结构可以最大程度地强化帧重要性信息;其次,设计了帧间自注意力增强模块,进一步协同帧间的重要性分数与其特征内在关联性的学习;最后,设计了动态图卷积下的隐藏属性关联学习模块来学习复杂事件的隐藏属性及事件之间的关联性,最终获得具有潜在语义信息感知的短视频检测系统并将其用于最终的短视频事件检测。在公开数据集和新构建数据集上进行了实验,实验结果表明了所提方法的有效性。
Micro-Video Event Detection Based on Deep Dynamic Semantic Correlation
Nowadays,micro-video event detection exhibits great potential for various applications.As for event detection,previous studies usually ignore the importance of keyframes and mostly focus on the exploration of explicit attributes of events.They neglect the exploration of latent semantic representations and their relationships.Aiming at the above problems,a deep dynamic semantic correlation method is proposed for micro-video event detection.First,the frame importance evaluation module is designed to obtain more distinguishing scores of keyframes,in which the joint structure of variational autoencoder and generative adversarial network can strengthen the importance of information to the greatest extent.Then,the intrinsic correlations between keyframes and the corresponding features are cooperated through a keyframe-guided self-attention mechanism.Finally,the hidden event attribute correlation module based on dynamic graph convolution is designed to learn latent semantics and the corresponding correlation patterns of events.The obtained latent semantic-aware representations are used for final micro-video event detection.Experiments performed on the public datasets and the newly constructed micro-video event detection dataset demonstrate the effectiveness of the proposed method.

micro-videosemantic correlationfeature representationgraph convolution

井佩光、宋晓艺、苏育挺

展开 >

天津大学电气自动化与信息工程学院,天津 300072

短视频 语义关联 特征表示 图卷积

国家自然科学基金天津市自然科学基金

6180227720JCQNJC01210

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(4)
  • 38