首页|动态场景下基于加权静态的视觉SLAM算法

动态场景下基于加权静态的视觉SLAM算法

扫码查看
针对传统视觉同步定位和映射(SLAM)系统在动态环境中鲁棒性和定位精度低等问题,基于ORB-SLAM2算法框架,提出一种在室内动态环境中运行稳健的视觉SLAM算法。首先,语义分割线程采用改进的轻量化语义分割网络YOLOv5获得动态对象的语义掩码,并通过语义掩码选择ORB特征点,同时,几何线程通过加权几何约束的方法检测动态对象的运动状态信息。然后,提出一种给语义静态特征点赋予权值,并对相机的位姿和特征点的权值进行局部光束平差法(BA)联合优化的算法,有效地减少动态特征点的影响。最后,在TUM数据集和真实的室内动态场景中进行实验,结果表明,与改进之前的ORB-SLAM2算法相比,所提算法有效地提高了系统在高动态数据集中的定位精度,并且绝对轨迹误差和相对轨迹误差的均方根误差(RMSE)分别提升了96。10%和92。06%以上。
Visual SLAM Algorithm Based on Weighted Static in Dynamic Environment
To address the low robustness and positioning accuracy of the traditional visual simultaneous localization and mapping(SLAM)system in a dynamic environment,this study proposed a robust visual SLAM algorithm in an indoor dynamic environment based on the ORB-SLAM2 algorithm framework.First,a semantic segmentation thread uses the improved lightweight semantic segmentation network YOLOv5 to obtain the semantic mask of the dynamic object and selects the ORB feature points through the semantic mask.Simultaneously,the geometric thread detects the motion-state information of the dynamic objects using weighted geometric constraints.Then,an algorithm is proposed to assign weights to semantic static feature points and local bundle adjustment(BA)joint optimization is performed on camera pose and feature point weights,effectively reducing the influence of the dynamic feature points.Finally,experiments are conducted on a TUM dataset and a genuine indoor dynamic environment.Compared with the ORB-SLAM2 algorithm before improvement,the proposed algorithm effectively improves the positioning accuracy of the system on highly dynamic datasets,showing improvements of root mean square error(RMSE)of the absolute and relative trajectory errors by more than 96.10%and 92.06%,respectively.

visual simultaneous localization and mapping(SLAM)dynamic environmentweighted geometric constraintsemantic maskjointly optimized by BA

李勇、吴海波、李万、李东泽

展开 >

昆明理工大学机电工程学院,云南 昆明 650500

云南省先进装备智能制造技术重点实验室,云南 昆明 650500

视觉SLAM 动态环境 加权几何约束 语义掩码 BA联合优化

云南省人才培养基金国家自然科学基金

KKSY20170100152065035

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(4)
  • 22