首页|一种引入注意力机制的多尺度高光谱图像特征提取方法

一种引入注意力机制的多尺度高光谱图像特征提取方法

扫码查看
近年来,随着深度学习的发展,基于深度学习的特征提取方法在高光谱图像领域表现出良好的发展前景。提出了一种引入注意力机制的多尺度高光谱图像特征提取方法,包括光谱特征提取网络和空间特征提取网络两个部分,并使用一种得分融合策略进行融合。在光谱特征提取网络中,引入注意力机制来缓解因光谱维数过高导致的梯度消失问题,以提取多尺度的光谱特征。在空间特征提取网络中,引入注意力机制作用于网络主干,使其关注邻域内的重要部分,帮助分支网络提取关键信息。将5种光谱特征提取方法、3种空间特征提取方法以及3种空间-光谱联合特征提取方法在3个数据集上进行对比实验,实验结果表明,所提方法能够稳定、有效地提升高光谱图像的分类准确率。
Multi-Scale Feature Extraction Method of Hyperspectral Image with Attention Mechanism
In recent years,with the development of deep learning,feature extraction methods based on deep learning have shown promising results in hyperspectral data processing.We propose a multi-scale hyperspectral image feature extraction method with an attention mechanism,including two parts that are respectively used to extract spectral features and spatial features.We use a score fusion strategy to combine these features.In the spectral feature extraction network,the attention mechanism is used to alleviate the vanishing gradient problem caused by spectral high-dimension and multi-scale spectral features are extracted.In the spatial feature extraction network,the attention mechanism helps branch networks extract important information by making the network backbone focus on important parts in the neighborhood.Five spectral feature extraction methods,three spatial feature extraction methods and three spatial-spectral joint feature extraction methods are used to perform comparative experiments on three datasets.The experimental results show that the proposed method can steadily and effectively improve the classification accuracy of hyperspectral images.

hyperspectral imageslong short-term memoryattention mechanismfeature extractiondeep learning

许张弛、郭宝峰、吴文豪、尤靖云、苏晓通

展开 >

杭州电子科技大学自动化学院,浙江 杭州 310018

高光谱图像 长短期记忆网络 注意力机制 特征提取 深度学习

国家自然科学基金

61375011

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(4)
  • 20