首页|面向等效时间采样的人工智能均衡器

面向等效时间采样的人工智能均衡器

扫码查看
等效时间采样是高速光波形测试及质量评估领域的重要技术,其利用较低的实际采样率换取较高的带宽与垂直分辨率,导致测量具有随机、不连续等特征信号时,无法使用滤波、均值等方法进行均衡处理。为此,提出一种基于递归神经网络的等效时间采样信号均衡方法,通过训练递归网络模型建立等效时间均衡器,通过对光数字通信及激光雷达波形的等效时间采样信号进行处理验证该方法。结果表明:与输入波形相比,表征光通信质量的眼图相关参数,如眼高、眼宽、抖动得到明显提升,对于线性调频激光雷达信号改善了其波形幅值频谱响应,解决了等效时间采样信号的均衡处理难题。
Artificial Intelligence Equalizer for Equivalent Time Sampling
Equivalent time sampling is an important technology in the field of high-speed optical waveform testing and quality evaluation.It uses low actual sampling rates for exchanging higher bandwidth and vertical resolution;hence,it is incapable of using filtering,averaging,and other methods for equalization when measuring signals with random and discontinuous characteristics.Therefore,herein,a recursive neural network-based equivalent time sampling signal equalization method is proposed.By training the recursive network model,an equivalent time equalizer is established,and the method is validated by processing equivalent time sampling signals of optical digital communication and light detection and ranging(LiDAR)waveforms.The results show that compared with the input waveform,the eye graph related parameters that characterize the quality of optical communication,i.e.,eye height,eye width,and jitter,exhibit considerable improvements.For linear frequency modulation LiDAR signals,enhancing the waveform amplitude spectrum response solves the problem of equalization processing for equivalent time sampling signals.

equivalent time samplingequalizerrecurrent networkeye diagram

景宁、赵俊鹏、张敏娟

展开 >

中北大学信息与通信工程学院山西省光电信息与仪器工程技术研究中心,山西太原030051

等效时间采样 均衡器 递归神经网络 眼图

国家自然科学基金山西省基础研究计划资助项目

62105305202203021221114

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(5)
  • 18