首页|基于卷积神经网络的干涉投影畸变校正方法

基于卷积神经网络的干涉投影畸变校正方法

扫码查看
在非球面零位干涉检测中,待测面检测误差分布与实际误差分布间存在干涉投影畸变.针对目前投影畸变校正方法计算复杂、通用性差等问题,提出一种基于卷积神经网络(CNN)的投影畸变校正方法.该方法首先在待测面上加入井字形柔性遮挡物,并根据投影畸变系数范围合成干涉图像作为CNN的数据集;然后选择合适的网络结构基于该数据集来训练网络;最后将实际干涉图像输入该网络以预测畸变系数,从而实现投影畸变的标定与校正.实验结果表明,该方法的理论校正误差小于1 pixel,实际误差校正精度优于传统标记点法,证明了该方法高效可行.
Distortion Correction Method of Interference Projection Based on Convolutional Neural Network
In the aspherical surface zero position interference detection,there is a projection distortion between the measurement error distribution and the actual error distribution of the surface to be measured.Aiming at the problems of complex calculation and poor generality of current projection distortion correction methods,a correction method based on a convolutional neural network(CNN)is proposed.In this method,an intersecting parallels flexible occlude is added to the surface,and the interference image is synthesized according to the range of projected distortion coefficient as the data set of CNN.Then the appropriate network structure to train the network based on the data set is selected.Finally,the actual interference image is input into the network to predict the distortion coefficient,and to realize the calibration and correction of the projection distortion.Experimental results show that the theoretical correction error of this method is less than 1 pixel,and the actual error correction accuracy is better than that of the traditional marker method,which proves that the method is efficient and feasible.

interferometrydistortion correctiondeep learningconvolutional neural networksystem calibration

颜蒙、黄启泰、任建锋

展开 >

苏州大学光电科学与工程学院&苏州纳米科技协同创新中心,江苏 苏州 215006

江苏省先进光学制造技术重点实验室&教育部现代光学技术重点实验室,江苏 苏州 215006

干涉检测 畸变校正 深度学习 卷积神经网络 系统标定

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(8)
  • 17