首页|基于ICP算法的移动机器人激光定位研究

基于ICP算法的移动机器人激光定位研究

扫码查看
针对移动机器人在进行传统2D环境的定位时所存在的定位精度低且定位实时性差等问题,提出一种改进的迭代近邻点(ICP)算法的定位方法.首先,建立位姿搜索空间,采用由低到高的分辨率对搜索空间进行逐层搜索,并结合多点云密度进行部分点云扫描匹配,排除非最优位姿,加速搜索过程;在进行点云匹配中,采用帧对图的方式,有效地利用了历史帧信息;对得到的最优位姿进行稀疏矩阵位姿优化,进一步提高定位精度.在SLAM Benchmark数据集上进行测试,结果表明所提方法的算法效率是现流行的Cartographer算法的 1.8倍到 4.9倍之间,同时平移误差较小.并利用Turtlebot2机器人进行实际测试,结果表明所提方法的定位误差相比Cartographer和Gmapping均有明显的降低,且实时性较好;与传统的自适应蒙特卡罗重定位(AMCL)相比,平移误差均值降低了0.035 m,旋转误差均值降低了0.001 rad,具有较高的重定位精度.
Laser Location of Mobile Robot Based on ICP Algorithm
This study presents a localization method based on the improved iterative closest point(ICP)algorithm to solve the localization problems of mobile robots,such as low positioning accuracy and poor real-time positioning,in traditional 2D environments.The algorithm begins by establishing a pose search space,which systematically explored layer-by-layer,transitioning from lower to higher resolutions.To accelerate the search process and eliminate nonoptimal poses,partial point cloud scanning matching was executed synergistically with multipoint cloud density.Adoption of the frame-to-image method by the point cloud matching enabled the effective utilization of historical frame information.Further enhancements in positioning accuracy were achieved through the sparse matrix pose optimization for obtained optimal pose.Tests conducted on the SLAM Benchmark dataset show that the proposed algorithm is considerably more efficient,boasting a 1.8‒4.9 times efficiency gain over the popular Cartographer algorithm,and has less translation error.Real-world tests conducted on Turtlebot2 reveal that the proposed method exhibits substantially fewer positioning errors than Cartographer and Gmapping,showing superior real-time performance.Compared with the traditional adaptive Monte Carlo relocation(AMCL),the proposed method reduces mean translation errors by 0.035 m and mean rotation errors by 0.001 rad,resulting in higher relocation accuracy.

lidarmobile robot localizationmultiresolutioniterative closest pointmultipoint cloud density

赵龙云、伞红军、陈久朋、彭真

展开 >

昆明理工大学机电工程学院,云南 昆明 650500

云南省先进装备智能制造技术重点实验室,云南 昆明 650500

激光雷达 移动机器人定位 多分辨率 迭代近邻点 多点云密度

云南省科技厅重大专项云南省基础研究计划

202002AC080001202301AU070059

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(8)
  • 26