首页|无透镜成像系统中的无重建目标识别技术

无透镜成像系统中的无重建目标识别技术

扫码查看
无透镜成像系统使用掩模板替代镜头,在降低成本的同时使设备更加轻巧,然而在进行目标识别前需通过计算重建图像,涉及参数调优和计算耗时问题.基于此,提出一种无重建的目标识别方案,直接在无透镜相机拍摄的编码图像上训练网络识别目标,在节约计算资源的同时还提供隐私保护.使用具有相位掩模板和振幅掩模板的无透镜相机,仿真生成MNIST与Fashion MNIST数据集和实采MNIST数据集,然后在这些数据集上训练ResNet-50与Swin_T网络进行目标识别.结果表明,在仿真MNIST、Fashion MNIST和真实MNIST数据集上,所提方案的最高识别准确率达99.51%、92.31%和98.06%,与先重建目标后识别方案的准确率相当,证明所提方案是一种高效的、具有隐私保护的端到端方案,且在两种掩模板和两类常规骨干分类网络上得到了验证.
Reconstruction-Free Object Recognition Scheme in Lensless Imaging Systems
Lensless imaging systems use masks instead of lenses,reducing costs and making equipment lighter.However,before object recognition,reconstructing an image is necessary.This reconstruction involves parameter tuning and time-consuming calculations.Hence,a reconstruction-free object recognition scheme,which directly trains networks to recognize objects on encoded images captured via lensless cameras,that saves computing resources and protects privacy,is proposed herein.Using lensless cameras with a phase mask and an amplitude mask,the real MNIST dataset is collected and the simulated MNIST and Fashion MNIST datasets are generated.Subsequently,the ResNet-50 and Swin_T networks are trained on these datasets for object recognition.The results show that with respect to the simulated MNIST,Fashion MNIST,and real MNIST datasets,the highest recognition accuracy achieved by the proposed scheme is 99.51%,92.31%,and 98.06%,respectively.These accuracies are comparable to those achieved by the reconstructed object recognition scheme,proving that the proposed scheme is an efficient end-to-end scheme that provides privacy protection.Moreover,the proposed scheme is verified using two types of masks and two types of conventional backbone classification networks.

computational imagingobject recognitiondeep learninglensless imaging

陈凯余、李颖、李政岱、郭友明

展开 >

中国科学院自适应光学重点实验室,四川 成都 610209

中国科学院光电技术研究所,四川 成都 610209

中国科学院大学,北京 100049

中国科学院大学电子电气与通信工程学院,北京 100049

光场调控科学技术全国重点实验室,四川 成都 610209

展开 >

计算成像 目标识别 深度学习 无透镜成像

国家自然科学基金国家自然科学基金中国科学院青年创新促进会项目中国科学院光电技术研究所前沿部署项目

12173041117330052020376C21K002

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(8)
  • 22