首页|基于DeepLabv3+的轻量化路面裂缝检测模型

基于DeepLabv3+的轻量化路面裂缝检测模型

扫码查看
裂缝是路面最主要的病害之一,及时、有效地检测和评估裂缝对路面养护至关重要.为实现路面裂缝图像快速、准确的语义分割,提出一种基于DeepLabv3+模型的路面裂缝检测方法.为减小模型参数量、提高推理速度,采用MobileNetv3作为模型的主干特征提取网络,且在空洞空间金字塔池化模块中使用Ghost卷积代替普通卷积,使模型更加轻量化.为避免替换主干网络降低模型精度:首先,在空洞空间金字塔池化模块中使用条形池化模块代替全局平均池化,有效捕获裂缝结构的上下文信息,避免无关区域噪声的干扰;其次,引入轻量级通道注意力机制efficient channel attention(ECA)模块,增强特征的表达能力,并设计浅层特征融合结构丰富图像的细节信息,优化模型对裂缝的识别效果;最后,构造混合损失函数解决裂缝数据集类别不平衡而导致检测精度较低的问题,利用迁移学习的训练方式提高模型的泛化能力.实验结果表明:所提路面裂缝检测模型参数仅为14.53 MB,比原模型参数量减少93.04%,平均帧率达到47.18,满足实时检测的要求;在精度方面,该模型裂缝检测结果的交并比和F1值分别为57.21%和72.76%,优于经典的DeepLabv3+、PSPNet、U-Net模型和先进的FPBHN、ACNet等模型.所提方法可大幅减小模型参数量,在保证路面裂缝检测精度的同时满足实时性,为基于语义分割的路面裂缝在线检测奠定基础.
Lightweight Pavement Crack Detection Model Based on DeepLabv3+
Cracks are one of the main road surface diseases,and timely and effective crack detection and evaluation are crucial for road maintenance.To achieve fast and accurate semantic segmentation of road crack images,a road crack detection method based on the DeepLabv3+model is proposed.To reduce the number of model parameters and improve inference speed,MobileNetv3 is used as the model's backbone feature extraction network,and Ghost convolution is used instead of ordinary convolution in the atrous spatial pyramid pooling module to make the model lightweight.To avoid degrading model accuracy by replacing the backbone network,the following measures are adopted.First,a strip pooling module is used in the atrous spatial pyramid pooling module to effectively capture the contextual information of crack structures while avoiding interference from irrelevant regional noise.Second,a lightweight channel attention mechanism,the effective channel attention(ECA)module,is introduced to enhance the feature expression ability,and a shallow feature fusion structure is designed to enrich the image's detailed information,optimizing the model's crack recognition effect.Finally,a mixed loss function is proposed to address the issue of low detection accuracy caused by imbalanced categories in the crack dataset,and transfer learning training is used to improve the model's generalization ability.The experimental results show that the proposed road crack detection model's parameters are only 14.53 MB,which is 93.04%less than the original model parameters,and the average frame rate reaches 47.18,meeting the requirements of real-time detection.In terms of accuracy,the intersection to union ratio and F1 value of this model's crack detection results are 57.21%and 72.76%,respectively,which are superior to classic DeepLabv3+,PSPNet,and U-Net models,as well as advanced FPBHN,ACNet,and other models.The proposed method can significantly reduce the number of model parameters while maintaining road crack detection accuracy and meeting real-time requirements,thus laying the foundation for online detection of road cracks based on semantic segmentation.

image processingroad crack detectionsemantic segmentationDeepLabv3+lightweightaccuracy of detection

夏晓华、苏建功、王耀耀、刘洋、李明臻

展开 >

长安大学工程机械学院,陕西 西安 710000

图像处理 路面裂缝检测 语义分割 DeepLabv3+ 轻量化 检测精度

国家自然科学基金陕西省重点研发计划

522052492019GY-116

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(8)
  • 24