首页|利用多通道加权投票的机载绿激光海陆波形分类

利用多通道加权投票的机载绿激光海陆波形分类

扫码查看
为解决复杂海陆环境下机载绿激光海陆波形分类精度低的问题,本文提出了一种利用多通道加权投票的绿激光海陆波形分类方法,即多通道加权投票卷积神经网络(MWV-CNN).首先,将绿激光深水和浅水通道采集的多通道波形经一个多通道输入模块分别输入到本文搭建的一维卷积神经网络(1D CNN)模块中;然后,各1D CNN模块对每个通道波形分别进行处理,获得各通道波形属于海洋和陆地类别的预测得分;最后,将各通道预测得分视为权值,利用一个多通道融合模块进行加权投票,确定波形最终类别.采用Optech CZMIL对中国连云港市沿海水域的实测数据进行实验验证,结果表明,MWV-CNN的总体分类精度、Kappa系数和总体精度标准差分别为99.45%、0.982和0.02%.与传统绿激光海陆波形分类方法相比,本文方法具有更好的分类精度和鲁棒性,为实现机载绿激光高精度海陆波形分类提供了一种新的有效途径.
Ocean-Land Waveform Classification Based on Multichannel Weighted Voting of Airborne Green Laser
In order to improve the accuracy of ocean-land waveform classifications of airborne green lasers in complex ocean-land environments,an ocean-land waveform classification method based on multichannel weighted voting[i.e.,multichannel weighted voting convolutional neural network(MWV-CNN)]is proposed.First,the multichannel green laser waveforms collected in the deep and shallow channels are input into the proposed one-dimensional convolutional neural network(1D CNN)module through a multichannel input module.Second,each 1D CNN module processes each channel waveform separately to obtain the predicted scores for each channel waveform belonging to the ocean and land categories.Finally,the predicted score of each channel is treated as weight,and a multichannel fusion module is used to determine the final waveform category via weighted voting.The measured data in the coastal waters of Lianyungang,China are verified by experiment using Optech CZMIL.The results indicate that the overall classification accuracy,Kappa coefficient,and overall accuracy standard deviation of MWV-CNN are 99.45%,0.982,and 0.02%,respectively,and as compared with traditional ocean-land waveform classification methods,the proposed method exhibits better classification accuracy and robustness,thus providing a new effective way for realizing ocean-land waveform classification of airborne green laser with high accuracy.

atmospheric optics and ocean opticsairborne LiDAR bathymetryocean-land waveform classificationgreen laser multichannel waveformsdeep learningweighted voting

赵兴磊、梁刚、赵建虎、周丰年

展开 >

山东农业大学信息科学与工程学院,山东 泰安 271018

武汉大学测绘学院,湖北 武汉 430079

长江水利委员会水文局长江口水文水资源勘测局,上海 200136

大气光学与海洋光学 机载激光雷达测深 海陆波形分类 绿激光多通道波形 深度学习 加权投票

国家自然科学基金

41906166

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(9)
  • 1
  • 4