首页|基于Scharr算子的计算鬼成像边缘提取技术

基于Scharr算子的计算鬼成像边缘提取技术

扫码查看
经典的边缘提取算法在实际应用中由于成像质量不高而被限制,基于鬼成像的边缘提取技术可对待测物实现高信噪比的边缘成像.基于此,提出一种基于Scharr算子的计算鬼成像边缘提取技术.Scharr算子具有低的计算复杂度和较小的计算量,可以更有效处理图像,将Scharr算子作用于散斑生成一组全新的散斑函数,对于Scharr算子模板作用于散斑移动中存在的边缘提取结果在某方向信息缺失的问题进行改进,对算子模板正负进行转换,生成新的算子模板,将新生成的算子模板运用于移动散斑使其生成新的照明散斑,从而实现对边缘提取结果各方向信息的补全.并根据计算鬼成像基本方法在理论上和实验上对未知图像的边缘进行提取,仿真与实验结果表明,所提方法可以获得完整清晰的待测物边缘.
Edge Detection Technology Based on Computational Ghost Imaging Using Scharr Operator
The conventional edge detection encounters limitations in practical applications due to its low imaging quality.By contrast,the edge detection encounters based on ghost imaging can achieve a high signal-to-noise ratio for the edge imaging of object.Accordingly,this paper proposes a computational ghost imaging based on the edge detection using the Scharr operator.The Scharr operator has low computational complexity,enhancing its effectiveness for image processing.Hence,a new set of speckle functions is generated by applying the Scharr operator to speckle.When the Scharr operator template is applied to speckle movement,information will miss along a certain direction in edge extraction results.To address this problem,a new operator template is generated by converting the positive and negative values of the operator template.Thus,a new illumination speckle is created by applying the newly generated operator template to the moving speckle,thereby obtaining complete information along all directions in the edge detection results.Additionally,based on the basic method of computational ghost imaging,edges of unknown images are extracted theoretically and experimentally.The simulation and experimental results show that the proposed method can obtain complete and clear edges of the tested object.

computational ghost imagingedge detectionScharr operatorspeckle-shifting

姚昱、郑洋、程子燚、高超、王晓茜、姚治海

展开 >

长春理工大学物理学院,吉林 长春 130022

计算鬼成像 边缘提取 Scharr算子 移动散斑

吉林省自然科学基金

YDZJ202101ZYTS030

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(10)
  • 23