首页|基于阵列分布信息引导的密集目标检测算法

基于阵列分布信息引导的密集目标检测算法

扫码查看
针对工业场景下密集相似目标检测过程中,容易出现定位误差和伪目标等问题,提出一种基于阵列分布信息引导的密集目标检测算法.从密集目标图像中提取种子目标,根据目标阵列排布规则设计四方向搜索匹配策略,以种子目标的四邻域构建候选目标匹配区域,利用重索引算法更新目标位置索引,不断遍历实现所有目标的精确定位;针对相似目标检测困难的问题,在卷积神经网络前引入Transformer自注意力结构,提取样本间位置和类别的相关性特征,设计基于组图孪生卷积Transformer的分类网络,增强相邻目标图像结构化信息,实现密集相似目标的精确分类,最终完成稳健的目标检测任务.对大量密集目标图像数据集进行实验,结果表明,所提算法在精度上优于对比算法,检测分类准确率达到98.71%,可以完整提取目标并进行精确分类.
Dense Target Detection Based on Array Information Guidance
This study proposes a dense target detection algorithm utilizing array distribution information guidance to address challenges related to positioning errors and false targets commonly occurring during the detection process of numerous similar targets in industrial settings.The methodology involves extracting seed targets from dense target images and implementing a four-direction search matching strategy based on target array layout rules.It forms candidate target matching regions from the surrounding four regions of the seed targets,thereby updating the target position index through a re-indexing algorithm and conducting continuous traversing to precisely position all targets.Additionally,to address the difficulty of detecting similar targets,a Transformer self-attention structure is introduced in front of the convolutional neural network to extract correlation features of positions and categories among samples.Subsequently,a classification network based on the twin convolutional Transformer is devised to enhance structured information within adjacent target images,enabling accurate classification of dense and similar targets and thereby accomplishing robust target detection tasks.Experiments are conducted on a large number of dense target image datasets,and the results show that the proposed algorithm outperforms the comparison algorithms in accuracy,achieving detection and classification accuracy of 98.71%.Therefore,it can effectively extract targets and conduct precise classification.

target detectiondense targetarray informationfour-direction search matchingTransformer

童浩、吴静静、安聪颖

展开 >

江南大学机械工程学院,江苏 无锡 214122

江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122

目标检测 密集目标 阵列信息 四方向搜索匹配 Transformer

国家自然科学基金国家自然科学基金

6207241661873246

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(10)
  • 22