首页|基于图优化的激光SLAM点云整体配准方法

基于图优化的激光SLAM点云整体配准方法

扫码查看
针对激光同步定位与制图(SLAM)算法在扫描轨迹过长时,获得的点云容易出现漂移误差且精度变差的问题,提出一种基于图优化的激光SLAM点云整体配准方法.对于有一定漂移误差的激光SLAM点云,先后构建初始位姿图和迭代位姿图进行级联优化.首先基于分段点云相似性和形心距离,构建初始位姿图进行优化,以减小轨迹漂移误差,获得漂移误差较小的SLAM点云.然后基于分段点云重叠度构建迭代位姿图,依次进行点云迭代粗优化和精优化,获得更高精度的SLAM点云.使用一组手持和三组车载激光SLAM数据进行实验.优化后,4组实验数据的各自重复扫描点云很好地重叠在一起,匹配关键点之间的距离的均方根误差(RMSE)分别由优化前的2.667 m、10.348 m、19.018 m和3.412 m降为0.158 m、0.211 m、0.218 m和0.157 m.实验结果表明,所提算法可以有效解决激光SLAM点云长轨迹扫描的漂移误差问题,提升点云数据精度.
Global Registration Method for Laser SLAM Point Clouds Based on Graph Optimization
To address the issue of drift errors and inadequate precision in point clouds produced by laser-based simultaneous localization and mapping(SLAM)algorithms during lengthy scanning trajectories,this study presents a global point cloud registration approach for laser SLAM that relies on graph optimization.We constructed initial and iterative pose graphs for cascaded optimization in succession for laser SLAM point clouds with specific drift errors.The pose graph is initially created using point cloud similarity and centroid distance of segments to reduce trajectory drift error,resulting in SLAM point clouds with smaller drift errors.From this,iterative pose graphs are formed based on the overlap of point clouds between segments.Subsequently,the point clouds are coarsely and finely adjusted in an iterative manner to produce higher precision SLAM point clouds.Experiments were performed in this paper using one set of handheld and three sets of vehicle-mounted laser SLAM data.After optimization,the point clouds of the four experimental data sets were well overlapped by their respective repeated scans.The distance root mean square error(RMSE)between the matched keypoints is reduced to 0.158,0.211,0.218,and 0.157 m from 2.667,10.348,19.018,and 3.412 m,respectively,before the optimization.Experimental results indicate that the proposed algorithm can resolve the issue of drift error during laser SLAM point cloud long trajectory scanning,ultimately improving the accuracy of the point cloud data.

point cloud global registrationsimultaneous localization and mappinggraph optimizationK-means algorithm

唐浩、黎东、王成、聂胜、刘佳音、段烨

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650093

中国科学院空天信息创新研究院数字地球重点实验室,北京 100094

点云整体配准 同步定位与制图 图优化 K-means算法

国家重点研发计划浙江省尖兵领雁研发攻关计划

2021YFF07046002023C03190

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(10)
  • 23