首页|基于TransMANet的遥感图像语义分割算法

基于TransMANet的遥感图像语义分割算法

扫码查看
针对multiattention network(MANet)算法与图像语义信息关联不足、全局特征提取不充分和分割精度较低的问题,基于Transformer与注意力机制,提出一种增强浅层网络语义信息,具有融合局部和全局上下文的双分支解码器的网络结构,即Transformer multiattention network(TransMANet).首先,引入局部注意力嵌入机制,增强上下文信息的嵌入,并将高级特征的语义信息嵌入低级特征;然后,设计基于Transformer与卷积神经网络的双分支解码器,分别提取全局上下文信息和不同尺度的细节信息,对全局与局部信息建模;最后,改进原有的损失函数,缓解遥感数据集类别不平衡的问题,提高分割准确度.实验结果表明,TransMANet在UAVid、LoveDA、Potsdam和Vaihingen数据集上均取得了较MANet及其他有竞争力的先进方法更优的交并比指标,有较好的泛化能力.
Remote Sensing Image Semantic Segmentation Algorithm Based on TransMANet
Herein,we propose a Transformer multiattention network(TransMANet),a network structure based on Transformer and attention mechanisms,to address the issues of low segmentation accuracy,inadequate global feature extraction,and insufficient association between the multiattention network(MANet)algorithm and image semantic information.This network structure features a dual-branch decoder that combines local and global contexts and enhances the semantic information of shallow networks.First,we introduce a local attention embedding mechanism that enhances the embedding of context information and semantic information of high-level features into low-level features.Then,we design a dual-branch decoder that combines Transformer and convolutional neural networks,which extracts global context information and detailed information with different scales,thereby modeling global and local information.Finally,we improve the original loss function and use a joint loss function that combines cross-entropy loss and Dice loss to address the class imbalance problem often encountered in remote sensing datasets and thus improve segmentation accuracy.Our experimental results demonstrate the superiority of TransMANet over MANet and other advanced methods in terms of intersection over union on UAVid,LoveDA,Potsdam,and Vaihingen datasets.This indicates the strong generalization capability of TransMANet and its effectiveness in achieving accurate segmentation results.

image processingsemantic segmentationattention mechanismTransformerhigh-resolution remote sensing image

宋熙睿、葛洪伟

展开 >

江南大学人工智能与计算机学院,江苏 无锡 214122

江苏省模式识别与计算智能工程实验室(江南大学),江苏 无锡 214122

图像处理 语义分割 注意力机制 Transformer 高分辨率遥感影像

江苏省高等学校优势学科建设工程项目高等学校学科创新引智计划(111计划)

B12018

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(10)
  • 28