首页|大规模点云深度学习语义分割方法新进展

大规模点云深度学习语义分割方法新进展

扫码查看
点云数据可以提供现实世界中任意物体或场景的丰富空间信息,随着三维视觉技术的快速发展,处理包含数百万甚至数十亿个点的大规模点云语义分割任务引起了研究者的广泛关注.语义分割的目的是获得每个点的语义类别,用于更好地理解三维场景,在三维扫描技术和深度学习技术共同推动下,它已广泛应用于智能机器人、增强现实和自动驾驶等领域.为了展示深度学习在大规模点云语义分割领域的最新进展,首先对近年来基于深度学习的大规模点云语义分割方法进行全面的归纳和总结;然后介绍常用的大规模点云数据集和评价指标,在此基础上比较和分析不同算法的分割性能;最后指出现有方法的局限性,并对大规模点云语义分割任务的未来研究方向进行展望.
Advancements in Semantic Segmentation Methods for Large-Scale Point Clouds Based on Deep Learning
Point cloud data can provide rich spatial information about any object or scene in the real world.Accordingly,the rapid development of the three-dimensional(3D)vision technology has promoted the point cloud data application,in which the task of performing a large-scale point cloud semantic segmentation containing millions or billions of points has received wide attention.Semantic segmentation aims to obtain the semantic class of each point,which is used to better understand 3D scenes.Driven by the common progress of the 3D scanning and deep learning technologies,point cloud semantic segmentation is being widely applied in the fields of intelligent robotics,augmented reality,and autonomous driving.First,the recent large-scale point cloud semantic segmentation methods based on deep learning are comprehensively categorized and summarized to demonstrate the latest progress in the field.Next,the commonly-used large-scale point cloud datasets and evaluation metrics for evaluating semantic segmentation models are introduced.Based on this,the semantic segmentation performances of different algorithms are compared and analyzed.Finally,the limitations of the existing methods are determined,and the future research directions for the large-scale point cloud semantic segmentation task are prospected.

image processingpoint clouddeep learningsemantic segmentationautonomous driving

艾达、张晓阳、胥策、秦斯渝、元辉

展开 >

西安邮电大学通信与信息工程学院,陕西 西安 710121

山东大学控制科学与工程学院,山东 济南 250100

图像处理 点云 深度学习 语义分割 自动驾驶

国家自然科学基金

62172259

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)