首页|白车身涂胶缺陷自动检测方法

白车身涂胶缺陷自动检测方法

扫码查看
白车身涂胶是汽车生产中的重要环节,实现白车身涂胶缺陷的自动检测对于提高汽车生产质量和效率具有重要的意义.针对目前基于传统图像处理和深度学习的视觉检测方法均不能很好地完成涂胶缺陷检测的问题,提出一种将深度学习和传统图像处理相结合的白车身涂胶缺陷检测方法.首先,利用Faster R-CNN的区域候选网络完成胶条的定位和抽取,并根据检测到的感兴趣区域个数,判断是否存在断胶缺陷;然后,采用广度优先搜索和骨架提取算法计算胶条的像素面积、长度和宽度;最后,通过相机标定得到实际宽度和像素宽度的映射比值,计算出胶条的实际宽度,由此判断涂胶宽度是否合格,实现涂胶的缺陷检测.采用(10±1)mm涂胶进行验证实验,结果表明:该方法能够准确识别出断胶缺陷;对胶条宽度的测量误差在±0.35 mm以内;检测速度约为19.50 frame·s-1,满足实际生产的要求.
Automatic Detection Method for Gluing Defects of Body-In-White
The application of adhesive on the white body is a crucial part of automotive production,and achieving automatic detection of adhesive defects on the white body is of great significance for improving the quality and efficiency of automotive production.However,based on traditional image processing and deep learning,current visual detection methods cannot effectively detect adhesive defects.Therefore,we propose a white body adhesive defect detection method combining deep learning and traditional image processing.First,Faster R-CNN was used to locate and extract adhesive strips,and the presence of adhesive breakage defects was determined based on the number of regions of interest.Then,the pixel area,length,and width of the adhesive strip were calculated using breadth-first search and skeleton extraction algorithms.Finally,the mapping ratio of actual width to pixel width was obtained through camera calibration,and the actual width of the adhesive strip was evaluated to determine whether the adhesive width was qualified and achieved defect detection of the adhesive.The validation experiment was conducted using a(10±1)mm adhesive coating,and the results demonstrate that this method can accurately identify adhesive breakage defects.The measurement error of the width of the adhesive strip is found to be within±0.35 mm.Furthermore,the detection speed is approximately 19.50 frame·s-1,which meets the requirements of actual production.

automotive gluingdefect detectionmachine visionimage processing

宋建阳、刘常杰

展开 >

天津大学精密测试技术及仪器国家重点实验室,天津 300072

汽车涂胶 缺陷检测 机器视觉 图像处理

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)
  • 10