首页|结合改进半径滤波和局部平面拟合的点云去噪算法

结合改进半径滤波和局部平面拟合的点云去噪算法

扫码查看
点云去噪是保证三维点云质量的一个重要环节,现有的去噪方法在去除噪声点时,极易去除目标点云,并且这个误差随着噪声识别精度的提高而增大.为解决这一问题,提出一种结合改进半径滤波和局部平面拟合的点云去噪算法.为了准确地去除噪声点,根据噪声点与目标点云的欧氏距离,将噪声点划分为远噪声点和近噪声点,先后利用不同的去噪策略进行处理.首先,基于点云的密度特征采用改进的半径滤波去除远噪声点.然后,利用点云与局部拟合平面的偏差这一几何特征,去除靠近目标点云和附着在目标点云表面的近噪声点.最后,在公共的点云数据集上进行实验,并对所提方法与其他3种先进方法进行了比较.实验结果表明,在相同的噪声水平下,所提方法的多数指标都优于其他3种对比方法,在达到更高的噪声识别精度的同时,有效地提高了目标点云识别精度,去噪精度达95.9%.
Point Cloud Denoising Algorithm Combined with Improved Radius Filtering and Local Plane Fitting
Point cloud denoising is crucial for ensuring the quality of three-dimensional point clouds.However,existing denoising methods are extremely prone to error removal for object point clouds while removing noise points,and the error increases with the improvement of noise recognition accuracy.To address this issue,a point cloud denoising algorithm that incorporates improved radius filtering and local plane fitting is proposed.To achieve effective noise point removal,noise points are divided into far-and near-noise points based on their Euclidean distance from the object point clouds and are successively processed using different denoising strategies.First,the far-noise points are removed using improved radius filtering based on the density characteristics of the point clouds.Next,the near-noise points,which are closely located to the object point clouds and attached to their surfaces,are removed using a geometrical feature assessing the deviation of the point cloud from the local fitting plane.Finally,experiments are conducted on common point cloud datasets and the proposed method is validated by comparing its performance with that of three other advanced methods.The results show that the proposed method outperforms all three methods in all indexes under the same noise level.Our proposed method effectively improves the object point cloud recognition accuracy while achieving higher noise recognition accuracy,with the denoising accuracy reaching 95.9%.

three-dimensional point cloudnoise classificationdenoisingradius filteringplane fitting

郭昌龙、夏振平、李超超、陈豪、张元申

展开 >

苏州科技大学物理科学与技术学院,江苏 苏州 215009

苏州科技大学电子与信息工程学院,江苏 苏州 215009

三维点云 噪声分类 去噪 半径滤波 平面拟合

国家自然科学基金江苏省自然科学基金中国科协2022年度研究生科普能力提升项目

62002254BK20200988KXYJS2022019

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)