首页|结合特征约束学习的可见光-红外行人重识别

结合特征约束学习的可见光-红外行人重识别

Visible-Infrared Person Re-Identification Via Feature Constrained Learning

扫码查看
由于可见光图和红外光图存在巨大的模态差异,可见光-红外光行人重识别是一个艰巨的任务.当前可见光-红外光行人重识别面临的主要问题是如何有效提取模态共享特征中的有用信息.为解决这个问题,提出了一个基于视觉Transformer的双流跨模态行人重识别网络,通过使用模态令牌嵌入模块和多分辨率特征提取模块来监督模型提取有辨别力的模态共享信息.此外,为了增强模型的辨别力,设计了模态一致性约束损失和特征中心约束损失.模态一致性损失会引导模型学习模态间的不变特征;特征中心约束损失会监督模型降低类内特征的差异性,增加类间特征的差异性.在SYSU-MM01数据集和RegDB数据集上的大量实验结果表明,所提方法优于大多数现有方法.在SYSU-MM01大型数据集上,所提模型的首位命中率和均值平均精度分别达到了67.69%和66.82%.
Due to the huge modal difference between visible and infrared images,visible-infrared person re-identification(VI-ReID)is a challenging task.Recently,the main problem of VI-ReID is how to effectively extract useful information from the shared features across modalities.To solve this problem,we propose a dual-flow cross-modal pedestrian recognition network based on the visual Transformer,which utilizes a modal token embedding module and a multi-resolution feature extraction module to supervise the model in extracting discriminative modal shared information.In addition,to enhance the discrimination of the model,the modal invariance constraint loss and the feature center constraint loss are designed.The modal invariance constraint loss will guide the model to learn the invariant features between modalities.The feature center constraint loss will supervise the model to minimize inter-class feature differences and maximize intra-class feature differences.Extensive experimental results on the SYSU-MM01 dataset and RegDB dataset show that the proposed method is better than most existing methods.On the large-scale SYSU-MM01 dataset,our model can achieve 67.69%and 66.82%in terms of the first matching characteristic and the mean average precision.

image processingperson re-identificationcross-modalitydual flow networkloss function

张镜、陈广锋

展开 >

东华大学机械工程学院,上海 201620

图像处理 行人重识别 跨模态 双流网络 损失函数

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)
  • 2