首页|LDASH:高鉴别力强鲁棒性的点云局部特征描述符

LDASH:高鉴别力强鲁棒性的点云局部特征描述符

LDASH:A Local Feature Descriptor of Point Cloud with High Discrimination and Strong Robustness

扫码查看
三维局部特征描述是三维计算机视觉的重要研究方向,被广泛用于三维感知任务中,以获取两片点云之间的点对应关系.针对现有大多数描述符存在的鉴别力低和鲁棒性弱等问题,提出一种局部分区属性统计直方图(LDASH)描述符.LDASH描述符基于局部参考轴(LRA)构建,首先沿径向划分局部空间,然后在每个划分分区中统计5个特征属性,实现空间和几何信息的全面编码.在LDASH描述符中,提出一种用于局部特征描述的新属性——距离加权角度值(DWAV).DWAV的构成不依赖LRA,增强了描述符对LRA误差的鲁棒性.此外,提出一种针对点云分辨率变化的鲁棒性增强策略,以降低实际测试中点云分辨率变化对描述符的干扰.在6个具有不同应用场景和干扰类型的数据集上对LDASH描述符的性能进行全面的评估,结果表明:LDASH描述符在所有数据集上的性能都明显优于现有描述符;与性能第二高的分区局部特征统计描述符相比,LDASH描述符的鉴别力平均提高约16.3%,鲁棒性平均增强约7.5%.最后,将LDASH描述符应用于点云配准,实现了最好的配准性能,其与5种转换估计算法结合后的平均正确配准率达到了73%.
Three-dimensional(3D)local feature description is an important research direction in 3D computer vision,widely used in many tasks of 3D perception to obtain point correspondences between two point clouds.Addressing the issues of low descriptiveness and weak robustness in existing descriptors,we propose a local divisional attribute statistical histogram(LDASH)descriptor.The LDASH descriptor is constructed based on local reference axes(LRA).First,the local space is partitioned radially,and then five feature attributes are computed within each partition,comprehensively encoding spatial and geometric information.In LDASH descriptor,we introduce a new attribute called distance weighted angle value(DWAV)for local feature description.DWAV is not dependent on LRA,thus enhancing the descriptor's robustness against LRA errors.Furthermore,a robustness enhancement strategy is proposed to reduce the interference of point cloud resolution variations in practical testing on the descriptors.The performance of the LDASH descriptor is extensively evaluated on six datasets with different application scenarios and interference types.The results demonstrate that LDASH descriptor outperforms existing descriptors in all datasets.Compared to the second-best method(divisional local feature statistics descriptor),LDASH descriptor exhibits an average improvement of approximately 16.3%in discriminability and 7.5%in robustness.Finally,LDASH descriptor is applied to point cloud registration,achieving a correct registration rate of 73%when combined with the five transformation estimation algorithms.

machine visionlocal feature descriptorlocal reference axisfeature descriptionpoint cloud registration

周磊、赵宝、梁栋、王梓涵、刘强

展开 >

安徽大学互联网学院,安徽 合肥 230039

安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心,安徽 合肥 230601

机器视觉 局部特征描述符 局部参考轴 特征描述 点云配准

国家自然科学基金青年基金项目国家自然科学基金面上项目

6220300762273001

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)