首页|基于改进压缩与激活块的遥感影像语义分割方法

基于改进压缩与激活块的遥感影像语义分割方法

扫码查看
针对传统方法在提取背景复杂的遥感影像时出现的语义识别错误等问题,基于压缩与激活块(SE-block)构建了一种简单而有效的卷积注意模块——区域压缩与激活块(RSE-block).该模块能汲取特征的局部上下文信息,从而指导网络筛选重要的特征,并在空间和通道两个方向上重新激活特征表达.此外,该模块能无缝集成到任何卷积神经网络构架中与网络一起进行端到端的训练.同时,提出了一种与该模块对应的解决不同尺寸地物目标识别问题的多尺度集成方法,并在此基础上构建了一个新的语义分割网络——RSENet.实验结果表明:RSENet在Potsdam数据集上的平均F1分数和平均交并比分别比基线网络高出0.028和0.021;与当下一些先进方法相比,RSENet具有竞争力.
Semantic Segmentation of Remote Sensing Imagery Based on Improved Squeeze and Excitaion Block
Aiming to solve the semantic recognition error of traditional methods in semantic segmentation of remote sensing imagery with complex background,we propose a simple but effective convolutional attention module,region squeeze and excitation block(RSE-block),based on squeeze and excitation block(SE-block).This block can squeeze regional context information of features,guides the network to screen more important features and excite features expression in both spatial and channel dimensions.In addition,it can be added to any convolutional neural network and trained end-to-end with the network.Meanwhile,we propose a multi-scale integration method supported by this block to solve the recognition problem of different size ground objects,and a new semantic segmentation network,RSENet,is constructed on these bases.The experimental results show that RSENet is superior to the baseline in terms of mean F1-score and mean intersection over union by 0.028 and 0.021 respectively on the Potsdam dataset,and is more competitive with some current advanced methods.

remote sensing imagerysemantic segmentationattention mechanismconvolutional neural network

吴盛葳、方娇莉、朱大明

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650000

昆明理工大学计算中心,云南 昆明 650000

遥感影像 语义分割 注意力机制 卷积神经网络

云南省重大科技专项

202202AD080010

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)
  • 4