首页|基于Deformable Transformer和自适应检测头的遥感图像目标检测

基于Deformable Transformer和自适应检测头的遥感图像目标检测

Target Detection in Remote Sensing Image Based on Deformable Transformer and Adaptive Detection Head

扫码查看
针对光学遥感图像目标精准定位困难、分类和定位特征容易存在冲突等问题,提出了一种基于Deformable Transformer和自适应检测头的遥感图像目标检测方法.首先,设计基于特征融合和Deformable Transformer的特征提取网络,其中特征融合模块能丰富卷积神经网络浅层特征的语义信息,Deformable Transformer能对远距离特征建立依赖,可以有效实现对全局语义信息的捕获,提升特征表达能力.其次,构建基于任务学习模块的自适应检测头,在检测头中强化任务感知,能够自动学习与调整分类和定位任务的特征表示,缓解特征冲突.最后,将L1-IoU loss作为定位损失函数,在训练过程中能使模型更准确地衡量候选框与真实框之间的定位误差,从而提高目标定位的准确性.在高分辨率遥感数据集NWPU VHR-10和RSOD上对该方法进行有效性评估,结果显示,与其他方法相比,所提方法具有较为明显的提升效果.
To address the challenges of precise localization of targets in optical remote sensing images and conflict between classification and localization features in the detection head,a remote sensing image target detection method based on Deformable Transformer and adaptive detection head is proposed.First,we design a feature extraction network based on feature fusion and Deformable Transformer.The feature fusion module enriches the semantic information of shallow convolution neural network features,and the Deformable Transformer establishes dependencies on distant features.This in turn effectively captures global semantic information and improves feature representation capability.Second,an adaptive detection head based on task learning module is constructed to enhance task awareness within the detection head.It automatically learns and adjusts the feature representation for classification and localization tasks,and thereby,mitigates feature conflicts.Finally,the L1-IoU loss is proposed as a localization loss function to provide a more accurate assessment of localization error between candidate boxes and ground truth boxes during training,thereby improving the accuracy of object localization.The effectiveness of the proposed method is evaluated on high-resolution remote sensing datasets,NWPU VHR-10 and RSOD.The results show significant improvements when compared to other methods.

remote sensing imagetarget detectionDeformable Transformertask learning moduleadaptive detection headL1-IoU loss

彭浩康、葛芸、杨小雨、胡昌泉

展开 >

南昌航空大学软件学院,江西 南昌 330063

江西慧航工程咨询有限公司,江西 南昌 330038

遥感图像 目标检测 Deformable Transformer 任务学习模块 自适应检测头 L1-IoU loss

国家自然科学基金国家自然科学基金

4226107041801288

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)