首页|基于自监督学习的高光谱图像降维算法

基于自监督学习的高光谱图像降维算法

Dimensionality Reduction Algorithm for Hyperspectral Image Based on Self-Supervised Learning

扫码查看
针对高光谱图像(HSI)分类中有标签样本少和数据高维度降低HSI像素分类精度的问题,提出一种基于自监督学习的特征提取方法,以提取表示HSI数据关键信息的低维度特征.首先利用无监督数据增强方法扩展HSI训练集;随后在自监督学习框架下利用扩展的数据集训练由一个外部注意力模块构造的特征提取模块,在光谱数据内在共现属性的监督下,提取单个样本波段之间的自亲和力特征和不同样本之间的潜在相关性;最后,利用训练的特征提取模块降维原始HSI数据后将其输入后续分类器,实现对HSI像素的分类.通过对Indian Pines、Salinas和Pavia University数据集降维结果的定量评价,验证了所提方法的可行性和有效性.实验结果表明:所提方法生成的特征提取模块可充分提取原始光谱数据中的空间-光谱特征,对训练集尺寸不敏感,适用于小样本HSI数据的场景.
To address the low hyperspectral image(HSI)pixel classification accuracy caused by few number of labeled training samples and high-dimensional spectral data,this study proposes a self-supervised learning-based feature extraction method to extract low-dimensional features representing crucial information of HSI data.First,an unsupervised data augmentation was used to expand the HSI training dataset.Then,the feature extraction module constructed by an external attention module was trained using an extended training dataset under a self-supervised framework.The self-affinity features between bands of a single sample and the potential correlation between different samples were extracted under the supervision of the intrinsic co-occurrence attributes of the spectral data.Finally,the trained feature extraction module was applied to reduce the dimension of raw HSI data,and the low-dimensional features were input to the subsequent classifier to classify the HSI pixels.The feasibility and effectiveness of the proposed method were evaluated through quantitative evaluation of dimensionality reduction results on Indian Pines,Salinas,and Pavia University datasets.The experimental results show that the feature extraction module generated using the proposed method can fully extract the spatial-spectral features from the original spectra.The proposed method is insensitive to the size of the training set and is suitable for small-sized HSI data.

image processinghyperspectral imagedimensionality reductionself-supervised learning

周峥、杨宇、张敢、许立兵、王明清、朱启兵

展开 >

无锡九方科技有限公司,江苏 无锡 214072

清华大学地球系统科学系,北京 100084

江南大学物联网工程学院轻工过程先进控制教育部重点实验室,江苏 无锡 214122

郑州科技学院电子与电气工程学院,河南 郑州 450052

展开 >

图像处理 高光谱图像 降维 自监督学习

海洋环境科学与数值模拟重点实验室开放基金

2020-ZD-05

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)
  • 7