首页|基于双重注意力网络的高动态范围图像重建

基于双重注意力网络的高动态范围图像重建

扫码查看
在高动态范围(HDR)图像重建任务中,当输入图像过曝光或者欠曝光时,常见的基于深度学习的HDR图像重建方法容易出现细节信息丢失和色彩饱和度差的问题.为了解决这一问题,提出一种基于双重注意力网络的HDR图像重建方法.首先,利用双重注意力模块(DAM)分别从像素和通道两个维度的注意力机制对过曝光和欠曝光的两张源图像进行特征提取并融合,得到一张初步融合图像;接着,构建特征增强模块(FEM)分别对初步融合图像进行细节增强和颜色校正;最后,引用对比学习使生成图像更加接近参考图像的同时远离源图像.经过多次训练,最终生成HDR图像.实验结果表明,所提方法取得最优的峰值信噪比(PSNR)、结构相似性(SSIM)和学习感知图像块相似度(LPIPS)指标,且生成的HDR图像色彩饱和度好且细节信息精准完整.
High Dynamic Range Image Reconstruction Based on Dual-Attention Network
The existing deep-learning-based high dynamic range(HDR)image reconstruction methods used for HDR image reconstruction are prone to losing detailed information and providing poor color saturation.This is because the input image is overexposed or underexposed.To address this issue,we propose a dual-attention network-based HDR image reconstruction method.First,this method utilizes the dual-attention module(DAM)to apply the attention mechanism from pixel and channel dimensions,respectively,to extract and fuse the features of two overexposed or underexposed source images,and obtain a preliminary fusion image.Next,a feature enhancement module(FEM)is constructed to perform detail enhancement and color correction for the fused images.The final reference to contrastive learning is generating images closer to the reference image and away from the source image.After multiple trainings,the HDR image is finally generated.The experimental results show that our proposed method achieves the best evaluation results on peak signal-to-noise ratio(PSNR),structural similarity(SSIM),and learned perceptual image patch similarity(LPIPS).Moreover,the generated HDR image exhibits good color saturation and accurate details.

image reconstructionhigh dynamic range imagingimage fusiondual attention mechanism

王仙峰、刘世本、田建东、赵娟平、刘雅静、郝春晖

展开 >

沈阳化工大学信息工程学院,辽宁 沈阳 110142

中国科学院沈阳自动化研究所机器人学国家重点实验室,辽宁 沈阳 110016

中国科学院机器人与智能制造创新研究院,辽宁 沈阳 110169

图像重建 高动态范围成像 图像融合 双重注意力机制

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)
  • 4