首页|融合Transformer分支和拓扑强制的血管内超声图像分割方法

融合Transformer分支和拓扑强制的血管内超声图像分割方法

扫码查看
大多数血管内超声(IVUS)图像分割方法缺乏对全局信息的捕获,且分割结果拓扑关系不符合医学先验知识,影响后续的诊断和治疗.为解决上述问题,提出一种将卷积神经网络(CNN)和Transformer双分支主干网络与拓扑强制网络相结合的图像分割方法.通过并列CNN分支与Transformer分支构建主干网络以实现局部和全局信息的融合,其中,组成Transformer分支的模块结合了轴向自注意力机制和增强型混合前馈神经网络以适应小数据集.此外,在主干网络之后连接拓扑强制网络,并使用双边滤波平滑层代替高斯滤波平滑层,可以在保证分割结果拓扑结构正确性的同时进一步提高分割精度.实验结果表明,所提方法所得内膜和中膜的Jaccard度量系数相比于基线网络分别提高 0.018和0.016,Hausdorff距离系数分别提高0.148和0.288,且拓扑结构正确率均为100%.该方法可以为IVUS图像提供准确可靠且拓扑结构正确的分割结果,在可视化结果和各项评价指标上都有较好表现.
Intravascular Ultrasound Image Segmentation Fusing Transformer Branch and Topology Enforcement
Most intravascular ultrasound(IVUS)image segmentation methods lack capture of global information,and the topological relationships of segmentation results do not conform to medical prior knowledge,which affects subsequent diagnosis and treatment.To address the above issues,an image segmentation method is proposed that combines convolutional neural networks(CNN)and Transformer dual branch backbone networks with topological forcing networks.A backbone network is constructed by juxtaposing CNN branches and Transformer branches to achieve the fusion of local and global information.The modules that make up the Transformer branch combine axial self attention mechanism and enhanced mixed feedforward neural network to adapt to small datasets.In addition,connecting the topology forcing network after the backbone network and using a bilateral filtering smoothing layer instead of a Gaussian filtering smoothing layer can further improve the segmentation accuracy while ensuring the correctness of the topology structure of the segmentation results.The experimental results show that the Jaccard measure coefficients of the lumen and media obtained by the proposed method are 0.018 and 0.016 higher than those of the baseline network,and the Hausdorff distance coefficients are 0.148 and 0.288 higher,respectively.Moreover,the accuracy of the topological structure is 100%.This method can provide accurate,reliable,and topologically correct segmentation results for IVUS images,and performs well in visualization results and various evaluation indicators.

medical image segmentationintravascular ultrasoundTransformertopology preservation

郝文月、蔡怀宇、左廷涛、贾忠伟、汪毅、陈晓冬

展开 >

天津大学精密仪器与光电子工程学院光电信息技术教育部重点实验室,天津 300072

乐普(北京)医疗器械股份有限公司,北京 102200

鲁西南医院,山东 聊城 252325

医学图像分割 血管内超声 Transformer 拓扑关系保留

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(12)
  • 1
  • 1