首页|基于网格网络的大气湍流退化图像复原

基于网格网络的大气湍流退化图像复原

扫码查看
大气湍流会导致图像发生退化.针对单幅大气湍流退化图像,提出基于网格网络的大气湍流退化图像复原方法.为了实现局部和深层次的多尺度特征提取,在主干模块中采用空洞卷积扩大模型感受野,同时在后处理模块中加入空间注意力模块,以更好地处理复原图像的白斑和伪影,提升像质.实验结果表明:所提网络平均0.29 s快速输出复原结果;相比其他方法,动态场景下对模拟数据的平均峰值信噪比(PSNR)和结构相似性(SSIM)最大提升高达 9.44 dB和0.1173,同时对真实场景下的大气湍流复原也有较好效果.
Atmospheric Turbulence Degradation Image Restoration Based on Grid Network
Atmospheric turbulence causes image degradation.For a single degraded image of atmospheric turbulence,an image restoration method based on grid networks was proposed in this study.To realize local and deep multiscale feature extraction,dilated convolution was used in the backbone module to expand the model sensory field.Additionally,a spatial attention module was added to the post-processing module.This enabled to better deal with the white spots and artifacts in the restored image and improve image quality.Experimental results show that the proposed network quickly outputs recovery results,demonstrating an average restoration output time of 0.29 s,and the average peak signal-to-noise ratio(PSNR)and structural similarity(SSIM)of the simulated data obtained using the proposed algorithm in a dynamic scene are maximally improved up to 9.44 dB and 0.1173,respectively,compared with other methods.Furthermore,the algorithm exhibits better effect for recovering atmospheric turbulence in real scenes.

atmospheric turbulence degradation modelgrid networkdilated convolutionspatial attention mechanism

程知、邓灶辉、高丽萍、陶寅、沐超、杜丽丽

展开 >

合肥学院人工智能与大数据学院,安徽 合肥 230601

合肥学院能源材料与化工学院,安徽 合肥 230601

中国科学院大气光学重点实验室,安徽 合肥 230031

中国科学院通用光学定标与表征技术重点实验室,安徽 合肥 230031

展开 >

大气湍流退化模型 网格网络 空洞卷积 空间注意力机制

安徽省自然科学基金青年项目

2008085QF290

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(14)
  • 3