首页|LiDAR点云压缩下采样与量化参数联合优化建模

LiDAR点云压缩下采样与量化参数联合优化建模

扫码查看
传统的LiDAR点云数据有损压缩方法通常会导致点云点的数量减少和剩余点的坐标精度降低.针对现有点云压缩参数优化方法忽略了点数减少带来的质量损失导致优化效果不高的问题,提出一种LiDAR点云压缩中下采样与量化参数的联合优化建模方法,该方法能同时对两种损失进行优化,提高点云的压缩效率.首先,统计采用不同参数组合压缩点云后的比特流大小;然后,找到码率大小与下采样和量化参数组合之间关系的分析模型,并用模型估计出码率的最小失真和对应的参数组合;最后,根据码率与最小失真对应的参数组合之间的关系建立下采样与量化参数联合优化模型.实验结果表明,所提方法有效提升了点云数据的压缩效率,相比基准编码器,在拟合数据集和测试数据集上分别获得了10.43%和16.39%的BD-rate提升.
Joint Optimization Modeling of Downsampling and Quantization Parameters for LiDAR Point-Cloud Compression
Conventional LiDAR point-cloud compression methods often lead to a decrease in the total number of points and coordinate accuracy of the remaining points.Addressing the limitations of existing optimization methods for point-cloud compression parameters,which frequently overlook the quality loss associated with reducing the number of points,this paper presents a novel approach for the joint optimization modeling of downsampling and quantization parameters in LiDAR point-cloud compression.This method simultaneously tackles both types of losses,thereby improving the compression efficiency of point clouds.Initially,bitstream sizes resulting from compressing point clouds with various parameter pairs are statistically analyzed.Subsequently,an analytical model is developed to elucidate the relationship between the code rate and the pairs of downsampling and quantization parameters.This model is then employed to estimate the minimum distortion of the code rate and the corresponding parameter pairs.Finally,a joint optimization model for downsampling and quantization parameters is formulated based on the relationship between the code rate and the parameter pairs associated with the minimum distortion.The experimental results indicate that the proposed method effectively improves the compression efficiency of point-cloud data.Compared with the baseline encoder,this method achieves a BD-rate improvement of 10.43%on the fit dataset and 16.39%on the test dataset.

LiDAR point cloudpoint cloud compressionpoint cloud downsamplingrate-distortion optimizationparameter joint optimization

杨先凤、廖陈、段昶、舒惠、来梦军、章超

展开 >

西南石油大学计算机科学学院,四川 成都 610500

西南石油大学电气信息学院,四川 成都 610500

四川警察学院智能警务四川省重点实验室,四川 成都 610206

LiDAR点云 点云压缩 点云下采样 率失真优化 参数联合优化

智能警务四川省重点实验室资助项目

ZNJW2023KFZD003

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(14)
  • 7