首页|基于纹理增强的双分支遥感建筑物提取网络

基于纹理增强的双分支遥感建筑物提取网络

扫码查看
针对高分辨率的遥感影像建筑物提取过程中,卷积神经网络难以兼顾全局信息、边缘信息和底层纹理信息,导致提取结果出现边缘模糊、结果不完整的现象,提出联合浅层卷积神经网络和Transformer网络的基于纹理增强的双分支遥感建筑物提取网络(TEOA-UNet).首先,为了在学习全局上下文信息的同时保持模型对局部建筑的关注,引入Outlook注意力机制;然后,为了提升模型对建筑物边缘的感知能力,使用边缘感知模块(EAM)促进模型学习建筑物边缘信息;最后,为了提升模型对底层纹理的感受能力,提出基于浅层卷积网络的纹理增强分支来加强模型的底层信息学习.在Massachusetts、WHU,以及Inria建筑物数据集上的实验结果表明,TEOA-UNet在不同分辨率和不同场景的遥感影像建筑物提取方面表现良好,能够有效提升建筑物边界分割精度和完整性.F1分数在上述3个数据集分别达到88.54%、95.22%、90.94%,相比Baseline模型SDSC-UNet分别提升 1.72百分点、0.49百分点和 0.23百分点.这一结果表明,TEOA-UNet具有较高的提取精度.
Dual-Branch Remote Sensing Building Extraction Network Based on Texture Enhancement
In the process of extracting buildings from high-resolution remote sensing imagery,convolutional neural networks(CNNs)struggle to balance global information,edge details,and underlying texture information,leading to blurred edges and incomplete results.To address this,we propose a dual-branch remote sensing building extraction network based on texture enhancement,named texture enhancement and Outlook attention U-shaped network(TEOA-UNet),which combines shallow CNNs with Transformer networks.First,to learn global contextual information while maintaining focus on local buildings,we introduce the Outlook attention mechanism.Then,to improve the model's perception of building edges,we utilize an edge aware module(EAM)to encourage the learning of edge information.Finally,to enhance the model's sensitivity to low-level textures,we put forward a texture enhancement branch based on a shallow convolutional network to strengthen the model's learning capability of low-level features.Experimental results on the Massachusetts,WHU,and Inria building datasets demonstrate that TEOA-UNet performs well in extracting buildings from remote sensing imagery with different resolutions and scenes,effectively improving the precision and completeness of building edge segmentation.The F1 score reached 88.54%,95.22%,and 90.94%on the aforementioned datasets,respectively,which is a respective increase of 1.72 percentage points,0.49 percentage points,and 0.23 percentage points over the Baseline model SDSC-UNet.These results indicate that TEOA-UNet possesses high extraction accuracy.

remote sensing imagebuilding extractionattention mechanismedge perceptiontexture enhancement

谌旭、史明昌

展开 >

北京林业大学水土保持学院,北京 100083

遥感影像 建筑物提取 注意力机制 边缘感知 纹理增强

北京市水土流失检测专项经费其他专业技术服务采购项目

662204321

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(14)
  • 5