首页|基于掩模和自监督学习的海浪三维重建

基于掩模和自监督学习的海浪三维重建

Three-Dimensional Reconstruction of Ocean Waves Based on Mask and Self-Supervised Learning

扫码查看
快速、准确的海浪三维重建结果对于海洋工程研究具有重要意义.针对传统海浪三维重建算法处理效率低以及生成点云中孔洞较多影响精度的问题,提出一种结合视差掩模和自监督学习的海浪三维重建算法.首先,基于图像重构、视差平滑和左右视差一致性损失训练网络模型并得到视差图;其次,添加掩模解码器用于掩模图像生成;最后,利用视差公共区域的先验知识,提出一种新的掩模损失函数,以消除图像非公共区域的视差异常值和海面遮挡问题的影响.在Acqua Alta数据集上的实验结果表明,所提算法可以有效减少海浪点云中杂点的数量,在精度接近传统算法的情况下,点云重建速度达到了0.024 s/frame.
The rapid and accurate three-dimensional(3D)reconstruction of ocean waves holds paramount significance for marine engineering research.To address the issues of low processing efficiency in traditional ocean wave 3D reconstruction algorithms and the accuracy affected by too many holes during the generation of point clouds,this paper proposes an approach that combines disparity mask and self-supervised learning for 3D ocean wave reconstruction.First,the disparity images are obtained through training network model based on image reconstruction,disparity smoothness,and left-right disparity consistency losses.Second,a mask decoder is added to generate disparity mask images.Finally,through leveraging prior knowledge of common disparity regions,a novel mask loss function is designed to mitigate the impact of disparity noise in non-common regions and ocean surface occlusion problems.The experimental results on the Acqua Alta dataset demonstrate that the proposed method can reduce noise in ocean wave point clouds effectively.In the case of precision close to the traditional algorithm,the point cloud reconstruction speed reached 0.024 seconds per frame.

wave three-dimensional reconstructiondisparity maskself-supervised learningmask loss function

黄军杰、徐锋、罗亮、陈天宝

展开 >

西南科技大学信息工程学院,四川 绵阳 621010

特殊环境机器人技术四川省重点实验室,四川 绵阳 621010

海浪三维重建 视差掩模 自监督学习 掩模损失函数

国家自然科学基金国家自然科学基金中国留学基金委项目西南科技大学龙山青年学者项目

6170142161601381CSC20210851008818LZX636

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(14)
  • 4