首页|空洞卷积优化U2-Net的X光快速分散检测模型

空洞卷积优化U2-Net的X光快速分散检测模型

扫码查看
锈蚀覆盖的古铜镜在非接触探伤检测中,因镜缘与镜心厚度各异,X光成像无法呈现完整的病害信息,但为满足文保观测需求而经融合处理后的X光图像又包含大量裂缝、侵蚀等多种病害特征.分散且细小的裂纹不仅难以检测,还极易出现过分割现象.为进一步提升古铜镜病害分割准确率和图像质量,在将裂缝、侵蚀全部分割出来的同时提升图像均方根差(RMSE)和峰值信噪比(PSNR)指数.选取U2-Net网络为基本模型,在U形嵌套思想下研究提升分割图像质量和准确率的优化策略.利用空间通道注意力机制增强对病害的检测提取;设计UD-block模块,利用空洞卷积在网络训练中提高对分散的细小裂纹的检测能力;在网络结构中添加双级错位链接机制,改善PSNR和RMSE指标;显著性图融合阶段添加金字塔注意力分割模块,使分割效果更符合人眼视觉感知.最后,通过对当前探伤检测算法进行实验对比和结果分析,此算法在消融实验上Dice系数、Jaccard指数、准确率、Hansdorff维数、RMSE和PSNR均取得最优,可为文物探伤检测算法进一步研究提供参考.
X-Ray Rapid Decentralized Detection Model of U2-Net with Dilated Convolution Optimization
In noncontact nondestructive testing,an ancient copper mirror coated with rust cannot present complete disease information in X-ray imaging because of the different thicknesses between the edge and center of the mirror.However,to satisfy the requirements of cultural-heritage observations,X-ray images are fused,which contain numerous cracks,erosions,and other characteristics of various diseases.Scattered and small cracks are not only difficult to detect but are also susceptible to oversegmentation.To further improve the accuracy and image quality of the segmentation of ancient bronze mirror diseases,the root mean square error(RMSE)and peak signal-to-noise ratio(PSNR)indices of the images were improved while all cracks and erosions were segmented.The U2-Net was selected as the basic model and optimization strategies were considered to improve the quality and accuracy of the segmented images under the U-shaped nesting concept.Additionally,a spatial channel-attention mechanism was utilized to enhance disease detection and extraction.Subsequently,a UD-block module that utilizes dilated convolution was designed to improve the detection ability of scattered small cracks during network training.A two-level misalignment link mechanism was incorporated into the network structure to improve the PSNR and RMSE.In the fusion stage of saliency maps,a pyramid attention segmentation module was added such that the segmentation effect is more consistent with human visual perception.Finally,the result of experimental comparison and the analysis of current flaw-detection algorithms show that the Dice coefficient,Jaccard index,accuracy,Hansdorff dimension,RMSE,and PSNR obtained experimentally are the best,which can provide a reference for future studies pertaining to cultural-relic flaw-detection algorithms.

U2-Netspatial channel-attention mechanismdilated convolutionX-ray image

王姣、吴萌、相建凯

展开 >

延安大学数学与计算机科学学院,陕西 延安 716000

西安建筑科技大学信息与控制工程学院,陕西 西安 710055

陕西省文物保护研究院,陕西 西安 710075

U2-Net 空间通道注意力机制 空洞卷积 X光图像

国家自然科学基金延安大学横向项目西安建筑科技大学交叉学科基金西安建筑科技大学交叉学科基金

61701388YDHJY20240313X2022082X20230085

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(15)
  • 7