首页|基于POA-VMD和MPE的光纤周界入侵信号降噪方法

基于POA-VMD和MPE的光纤周界入侵信号降噪方法

扫码查看
针对当下的光纤周界入侵事件复杂多变以及噪声干扰的问题,需要对光纤周界系统采集的信号进行去噪处理.首先,提出了鹈鹕算法优化的变分模态分解降噪,并引入多尺度排列熵判决机制提高抑制模态混叠与虚假分量能力,最终将筛选出的信号组成重构信号,实现整个信号的去噪.实验结果表明,在双Mach-Zehnder光纤周界传感系统判别入侵的过程中,信号去噪方面有了明显的改善,以去噪信噪比、相关系数、降噪后信号的均方根误差为降噪性能评价指标,本文所提方法与现有的集合经验模态分解-相关系数和互补集合经验模态分解-相关系数方法相比去噪信噪比有所降低,相关系数明显提高,去噪信号的均方根误差略有减少.该算法不仅能够更好地消除光纤周界系统采集信号的噪声,还最大程度地保留了信号的特征信息.
Noise Reduction Method for Optical Fiber Perimeter Intrusion Signal Based on POA-VMD and MPE
Considering the complex and changeable intrusion events surrounding optical fiber perimeter and noise interference,denoising of signals collected by optical fiber perimeter systems is required.First,we propose the pelican optimization algorithm variational mode decomposition to reduce noise,and the multiscale permutation entropy decision mechanism to improve the ability to suppress modal aliasing and false components.Finally,screened signals are composed of reconstructed signals to realize the entire signal denoising.The experimental results demonstrate that signal denoising of the double Mach-Zehnder optical fiber perimeter sensing system was improved during the intrusion detection process.The denoising signal-to-noise ratio(SNR),correlation coefficient,and the mean square error of the signal after noise reduction were considered evaluation indices with regard to noise reduction performance.Compared with the existing methods of ensemble empirical mode decomposition-correlation coefficient and complementary ensemble empirical mode decomposition-correlation coefficient,the SNR of the proposed method is reduced,the correlation coefficient is clearly improved,and the root mean square error of the denoising signal is slightly reduced.

fiber optic sensingpelican optimization algorithmvariational mode decompositionmultiscale permutation entropy

马愈昭、朱庆啸、吕其明、李猛

展开 >

中国民航大学电子信息与自动化学院,天津 300300

中国民航大学空中交通管理学院,天津 300300

光纤传感 鹈鹕优化算法 变分模态分解 多尺度排列熵

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(17)