首页|抗扰动跨场景多光谱成像彩绘文物颜料分类方法

抗扰动跨场景多光谱成像彩绘文物颜料分类方法

Anti-Disturbance Cross-Scene Multispectral Imaging Pigment Classification Method for Painted Cultural Relics

扫码查看
受到文物保护现场的环境限制,大面积彩绘文物无法一次成像获取完整的数据,利用多组分镜头成像可以获得完整的高空间分辨率多光谱数据.但分镜头成像过程中的光照不均匀、光谱噪声等干扰会造成在光谱维度的数据偏移,导致颜料分类精度下降.针对该问题,提出了一种抗光谱扰动的跨场景多光谱成像彩绘文物颜料分类方法.首先基于尺度不变特征提取相邻分镜头图像的重叠区域,并利用直方图规定化方法以重叠区域灰度均值为基准消除光谱偏移;通过深度编解码器提取空谱特征并随机化生成可变的空谱信息,使其具有跨场景的域移位属性;引入光谱通道注意力机制增强模型对关键通道的响应能力;最后利用对抗学习策略优化生成器,增强模型泛化能力.实验结果表明:在模拟与真实壁画数据集的实验中,利用抗光谱扰动数据的算法总体分类精度平均提高4.13%,Kappa系数平均提高5.65%;在跨场景彩绘文物颜料分类实验中,颜料总体分类精度提高了4.01%,Kappa系数提高3.16%.
The environment at cultural relics protection sites restricts the ability to image large-area painted cultural relics at once,necessitating the use of multi-lens imaging to acquire complete high spatial resolution multispectral data.However,challenges such as uneven illumination,spectral noise,and other disturbances during split-lens imaging can cause spectral dimension offsets,reducing the accuracy of pigment classification.To address this issue,a method for classifying pigments in painted cultural relics using cross-scene multispectral imaging resistant to spectral disturbances has been proposed.First,the overlapping regions of adjacent sub-shot images are extracted based on scale-invariant features,and the histogram specification method is used to eliminate the spectral shifts with the mean gray value of the overlapping regions as the benchmark.Spatial-spectral features are extracted through a deep codec,which randomizes the generation of variable spatial-spectral information to endow it with cross-scene domain shift properties.The model's responsiveness to key spectral channels is enhanced through the spectral channel attention mechanism.Optimization of the generator via an adversarial learning strategy further enhances model generalization capability.The experimental results from simulated and real mural painting datasets demonstrate that the algorithm,utilizing anti-spectral perturbation data,achieves an average improvement of 4.13%in overall classification accuracy and a 5.65%increase in the Kappa coefficient.In cross-scene painted cultural relics pigment classification experiments,the overall classification accuracy of the pigment is enhanced by 4.01%,and the Kappa coefficient by 3.16%.

spectroscopymultispectral imagingpigment classificationcross-scenespectral perturbation

郭阮昭、王可、王慧琴、王展、甄刚、李源、李嘉琛

展开 >

西安建筑科技大学信息与控制工程学院,陕西 西安 710055

陕西省文物保护研究院,陕西 西安 710075

西安博物院,陕西 西安 710074

光谱学 多光谱成像 颜料分类 跨场景 光谱扰动

陕西省自然科学基础研究计划天津蓟州独乐寺泥塑壁画前期研究项目

2021JM-377

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(18)
  • 15