首页|基于深度全局信息融合的复杂山区机载点云滤波

基于深度全局信息融合的复杂山区机载点云滤波

Airborne Laser Point-Cloud Filtering in Complex Mountainous Terrain Utilizing Deep Global Information Fusion

扫码查看
激光雷达在获取地势陡峭、植被覆盖密集区域的点云数据时存在非地面点比重大、密度分布不均匀等情况,传统滤波算法难以获取精确的点云滤波结果,而深度学习在点云滤波中存在信息利用不充分、特征提取不足等问题.因此提出一种融合多维特征与全局上下文信息的点云滤波网络(MGINet),建立多维度特征提取与全局信息融合学习框架,提升复杂山区点云滤波精度.首先,MGINet设计了局部交叉特征融合模块,通过融合法向量与空间几何结构来获取高维差异特征,保留点云局部空间结构特征.然后,引入全局上下文聚合模块捕捉全局上下文信息,再结合交叉编码增强特征的泛用性.最后,在公开与真实的复杂山区数据集上进行测试,实验结果表明MGINet的滤波精度优于传统算法.
LiDAR exhibits high non-ground point ratios and uneven density distributions when obtaining point-cloud data in areas with steep terrains and dense vegetation coverage.Classical filtering algorithms cannot readily obtain accurate point-cloud filtering results.In point-cloud filtering using deep learning,issues such as insufficient information utilization and inadequate feature extraction persist.Therefore,this study proposes a point-cloud filtering network that integrates multidimensional features and global contextual information(MGINet).It establishes a framework for multidimensional feature extraction and global information fusion to enhance the accuracy of point-cloud filtering in complex mountainous regions.MGINet begins by designing a local cross-feature fusion module,which combines normal vectors with spatial geometric structures to extract high-dimensional diverse features,thereby preserving the local spatial structure features of the point cloud.Subsequently,a global-context aggregation module is introduced to capture global contextual information,thus enhancing the generality of the features through cross-coding.Finally,experimental testing on both public and actual datasets from complex mountainous areas shows that MGINet outperforms classical algorithms in terms of point-cloud filtering accuracy.

LiDAR datapoint cloud filteringfeature fusionglobal contextual information

崔杰瑞、普运伟、夏炎、刘一成

展开 >

昆明理工大学国土资源工程学院,云南 昆明 650093

云南省水利水电勘测设计研究院,云南 昆明 650021

昆明理工大学计算中心,云南 昆明 650500

激光雷达数据 点云滤波 特征融合 全局上下文信息

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(18)
  • 9