首页|基于忆阻卷积神经网络的遥感场景分类

基于忆阻卷积神经网络的遥感场景分类

扫码查看
遥感影像场景类别多、类内变异大、类间相似度高,而卷积神经网络等传统的深度网络在目标对象特征表示能力,以及遥感场景图像中的对象信息和背景信息鉴别力弱,参数量大,从而导致分类精度不高、训练效率低,针对上述问题,提出了一种用于遥感场景分类的忆阻卷积神经网络.通过上下文感知增强Transformer模块融合共享权值和上下文感知权值捕获高频和低频的特征信息,将多尺度选择性内核单元构建模块融入卷积块中,根据不同层次的特征图选择不同的卷积核,提取不同尺度的特征信息,提升模型对复杂场景的处理能力.进一步,通过忆阻十字交叉阵列的权重映射构建出低功耗高速率的忆阻卷积网络.对公共数据集UCMercedLandUse的21类目标数据和NWPU-RESISC45的45类目标数据进行实验,分类精度分别达到94.76%、87.54%,比原模型分别提高了5.95百分点、5.07百分点,模型参数量大幅度减少.基于改进模型的忆阻神经网络精度损失分别仅为0.24百分点和0.23百分点,促进了边缘计算的发展.
Remote-Sensing Scene Classification Based on Memristor Convolutional Neural Network
Remote-sensing images typically present multiple scene categories,significant intraclass variance,and high interclass similarity.Conventional deep networks such as convolutional neural networks(CNNs)can neither adequately represent the features of target objects nor accurately distinguish between object and background information in remote-sensing scene images.Moreover,these networks typically exhibit large parameter sizes,thus resulting in low classification accuracy and inefficient training.Hence,a resistive CNN that can perform remote-sensing scene classification is proposed.A context-aware enhanced transformer module was introduced to fuse shared weights and context-aware weights for capturing both high-and low-frequency features.A multiscale selective kernel(SK)unit building block was integrated into the convolution block,and different convolution kernels were selected based on feature maps of different levels.Additionally,feature information of different scales was extracted to improve the processing ability of the model for complex scenes.Furthermore,a low-power and high-speed resistive CNN was constructed by weight mapping resistor crossbar arrays,thus reducing the computational overhead.Experimental results on the publicly available UCMercedLandUse dataset with 21 classes and the NWPU-RESISC45 dataset with 45 classes indicate classification accuracies of 94.76%and 87.54%,respectively.These accuracies represent improvements of 5.95 percentage points and 5.07 percentage points,respectively,compared with baseline models in addition to significantly reduced model parameters.The accuracy losses of the improved resistive CNN model on the two abovementioned datasets are only 0.24 percentage points and 0.23 percentage points,respectively.Thus,it is a promising model for promoting the advancement of edge computing.

remote sensing scenesconvolutional neural networkmemristorimage classification

赵益波、张意、于程程、杨清

展开 >

南京信息工程大学电子与信息工程学院,江苏 南京 210044

南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏 南京 210044

遥感场景 卷积神经网络 忆阻器 图像分类

国家自然科学基金国家自然科学基金

6237124261871230

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(18)
  • 4