首页|基于深度卷积生成对抗网络的大气湍流相位屏生成方法

基于深度卷积生成对抗网络的大气湍流相位屏生成方法

扫码查看
传统的功率谱反演法生成的大气湍流相位屏存在低频采样不足的问题,而采用直接求和的方法虽然能生成相位屏,但由于计算量大模拟速度较慢。本文引入了深度学习技术,通过训练深度卷积生成对抗网络(DCGAN)模型,成功地实现了对大气湍流相位屏的高效模拟。其中生成器损失函数收敛至0。07,判别器损失函数收敛至0。98,训练好的模型可用于直接生成湍流相位屏。本文采用了传统数值模拟和基于DCGAN模型模拟的两种方法生成大气湍流相位屏,对比发现DCGAN模型可以弥补传统模拟方式低频的不足,解决了周期性的局限性问题。该方法在大气湍流相位屏的快速生成、图像模拟仿真等领域有一定的应用价值。
Method for Generating Atmospheric Turbulence Phase Screen Based on Deep Convolutional Generative-Adversarial Networks
The atmospheric turbulence phase screen generated using the conventional power-spectrum-inversion method shows insufficient low-frequency sampling.Whereas the phase screen can be generated using the direct-summation method,the simulation speed is low owing to the significant amount of computations involved.Herein,a deep-learning technique is introduced to efficiently simulate an atmospheric turbulence phase screen by training a deep convolutional generative-adversarial network(DCGAN)model.The generator and discriminator loss functions converge to 0.07 and 0.98,respectively,and the trained model can be used to directly generate turbulent phase screens.Two methods for generating the atmospheric turbulence phase screen,i.e.,the conventional numerical simulation and a simulation based on the DCGAN model,were used.A comparison between the two reveals that the DCGAN model can alleviate the shortcomings of the conventional simulation method at low frequencies and overcome the periodicity limitation.This method is applicable to the rapid generation of atmospheric turbulence phase screens as well as to image simulation and emulation.

atmospheric turbulencedeep learningdeep convolutional generative-adversarial networkstransfer learningphase screen

王泽洋、朱月、安岩

展开 >

长春理工大学光电工程学院,吉林 长春 130022

长春理工大学空间光电技术研究所,吉林 长春 130022

长春工程学院勘查与测绘工程学院,吉林 长春 130021

大气湍流 深度学习 深度卷积生成对抗网络 迁移学习 相位屏

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(21)