首页|基于机器学习的空间目标激光测距信号识别方法

基于机器学习的空间目标激光测距信号识别方法

扫码查看
空间目标激光测距由于距离远,又是非合作目标,导致回波信号随时间呈非线性变化,严重制约了传统泊松方法的性能。因此,提出一种适用于激光测距非线性信号的识别方法。在特征构造方面,利用遗传算法,精细化构造了一组回波数据的数学特征,显著降低了所需训练样本的数量;在模型选择方面,采用随机森林模型,在训练速度较快的情况下,成功实现对回波信号和噪声的分类。对仿真和实测数据的综合分析表明,所提方法结果更优,从而验证了其有效性。
Machine Learning Based Laser Ranging Signal Recognition Method for Space Targets
Distant space target laser ranging encounters challenges due to the non-cooperative nature of the targets,resulting in nonlinear temporal variations in the echo signals.This nonlinearity poses a significant constraint on the performance of conventional Poisson methods.In response to this,the paper proposes a recognition methodology tailored for nonlinear laser ranging signals.In the realm of feature construction,a genetic algorithm is employed to intricately generate a set of mathematical features for the echo data,thereby substantially reducing the required number of training samples.Regarding model selection,a random forest model is adopted,successfully achieving the classification of signals and noise under the condition of expeditious training.The comprehensive analysis of simulation and measured data shows that the proposed method has better results,thus verifying its effectiveness.

measurementlaser rangingfeature engineeringrandom forestsignal recognition

郑妍昕、朱炬波

展开 >

中山大学人工智能学院,广东 珠海 519082

测量 激光测距 特征构造 随机森林 信号识别

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(21)