首页|应用于气体检测信号中的VMD-小波包分析降噪方法

应用于气体检测信号中的VMD-小波包分析降噪方法

扫码查看
为提高可调谐半导体激光器吸收光谱学(TDLAS)技术的气体浓度检测精度,针对检测过程中二次谐波信号的电噪声、光学噪声等干扰问题,提出一种基于遗传算法(GA)优化变分模态分解(VMD)联合小波包去噪算法。首先,利用GA对分解模态层数K与惩罚因子α寻优,得到最优参数组合;然后,利用所得到的最优参数组合对二次谐波信号进行分解,得到一系列的本征模态函数(IMF);其次,使用皮尔逊相关系数选取出纯净信号与含噪信号,并利用小波包对含噪信号进行降噪处理;最后,对降噪后信号与纯净信号进行重构,得到去噪后的二次谐波信号。实验结果表明:与其他多种降噪算法相比,所提算法能够有效去除二次谐波信号中的噪声,有效降低外界噪声在检测过程中的影响,提高气体浓度检测精度。
Application of a VMD-Wavelet Packet Analysis Denoising Method to Gas Detection Signals
To improve the detection accuracy of gas concentration in tunable semiconductor laser absorption spectroscopy,an optimized variational mode decomposition combined wavelet packet denoising algorithm,based on the genetic algorithm(GA),was proposed.The proposed algorithm can solve the electrical and optical noises of the second harmonic signal in gas detection.Initially,GA optimized the decomposition mode number K and penalty factor α,and the optimal parameter combination was obtained.Then,the second harmonic signal was decomposed by the optimal parameter combination,and a series of intrinsic modes(IMF)was obtained.Pearson correlation coefficient was used to select the pure and noisy signals,and the noisy signal was denoised using a wavelet packet.Finally,the denoised signal was reconstructed with the pure one to obtain the second harmonic signal after denoising.Results show that compared with other noise reduction algorithms,the proposed algorithm can effectively remove the noise in the second harmonic signal,reduce the influence of external noise on the detection process,and improve the detection accuracy of gas concentration.

absorption spectroscopy of tunable semiconductor lasersecond harmonic signalgenetic algorithmvariational mode decompositionwavelet packet denoising

王印松、蒋皓宸、孔庆梅、高建强

展开 >

华北电力大学自动化系,河北 保定 071003

华北电力大学动力系,河北 保定 071003

可调谐半导体激光器吸收光谱学 二次谐波信号 遗传算法 变分模态分解 小波包去噪

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(21)