首页|基于疲劳源孔隙的增材制造Ti6Al4V疲劳寿命预测

基于疲劳源孔隙的增材制造Ti6Al4V疲劳寿命预测

扫码查看
近年来通过激光选区熔化(SLM)技术成形Ti6Al4V航空航天零件已成为热点。但SLM过程中产生的孔隙缺陷往往会导致零部件的疲劳破坏问题。利用试验设计方法获取了不同工艺参数组合下SLM成形Ti6Al4V零件时的疲劳寿命数据。通过SEM技术测量了疲劳试样中疲劳源孔隙的特征参数,并分析了各特征参数与疲劳寿命之间的关系。基于疲劳源孔隙特征参数,采用随机森林方法,搭建了SLM成形Ti6Al4V零件疲劳寿命预测模型。利用随机搜索和k折交叉验证的方法获得了模型最优参数组合。模型预测结果接近 1。5倍误差带,R2 误差和平均相对误差分别为 0。914和29。1%,表明本模型具有较高的预测精度。
Fatigue Life Prediction of Additive Manufacturing Ti6Al4V based on Fatigue Source Pore
In recent years,forming Ti6Al4V aerospace parts by selective laser melting(SLM)technology has become an attractive research topic.However,pore defects that occur during the SLM process frequently lead to fatigue damage in the parts.The specifically designed experimental approach was applied to obtain fatigue life data when forming Ti6Al4V parts by SLM with different process parameter combinations.The SEM technique was used to measure the characteristic parameters of the fatigue source pore in the specimens,and the relationship between each characteristic parameter and fatigue life was analyzed.A fatigue life prediction model for SLM-formed Ti6Al4V parts was subsequently constructed based on characteristic parameters of the fatigue source pores using the random forest technique.The optimal model parameter combinations were obtained by utilizing stochastic search and k-fold cross-validation methods.The model prediction results are close to the 1.5 times error band,and the R2 and average relative errors are 0.914 and 29.1%,respectively.This indicates that the model exhibits high prediction accuracy.

selective laser meltingTi6Al4Vfatigue source porefatigue lifemachine learning

谢沛东、谢德巧、周凯、沈理达、田宗军、赵剑峰

展开 >

南京航空航天大学机电学院,江苏 南京 210016

激光选区熔化 Ti6Al4V 疲劳源孔隙 疲劳寿命 机器学习

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(21)