首页|熔覆方式对马氏体不锈钢表面激光熔覆温度场及组织、硬度的影响

熔覆方式对马氏体不锈钢表面激光熔覆温度场及组织、硬度的影响

扫码查看
利用Comsol软件对不同熔覆方式下的熔覆过程中的温度场进行模拟。通过优化工艺参数,在3Cr13不锈钢刀坯刀刃部分熔覆了Fe基高硬度、耐蚀合金。对比分析了两种熔覆层的显微组织和显微硬度。结果表明:模拟所得的熔池形貌与实际相符。顶端熔覆过程中熔池散热较快,温度场的最高温度为2271。1 K;侧面熔覆过程中,由于温度积聚,温度场的最高温度达到2349。7 K。顶端熔覆层组织从底部到表面依次为平面晶、少量胞状晶以及树枝晶;侧面熔覆层组织从底部到表面依次为平面晶、等轴晶、柱状树枝晶和树枝晶。顶端熔覆层平均显微硬度为783。8 HV,侧面熔覆层为688。5 HV。
Effect of Cladding Method on Temperature Field,Microstructure,and Hardness of Laser Cladding on Martensitic Stainless-Steel Surface
The temperature field during cladding under different cladding methods was simulated using the COMSOL software.Subsequently,using optimized process parameters,the Fe-based high-hardness and corrosion-resistant alloy was cladded on the blade of a 3Cr13 stainless-steel billet.The microstructure and microhardness of the two cladding layers were compared and analyzed.The results show that the simulated weld-pool morphology is consistent with the actual morphology.During top cladding,heat dissipates from the molten pool rapidly and the maximum temperature of the temperature field is 2271.1 K.During side cladding,the maximum temperature reaches 2349.7 K owing to heat accumulation.The microstructure of the top cladding layer from the bottom to the surface comprises a planar crystal,a small amount of cellular crystals,and dendrites.Meanwhile,the microstructure of the side cladding layer comprises a planar crystal,an equiaxed crystal,columnar dendrites,and dendrites from the bottom to the surface.The average microhardness of the top and side cladding layers is 783.8 HV and 688.5 HV,respectively.

laser claddingtemperature fieldmicrostructuremicrohardness

尹燕、吴怡霖、李辉、茹恩光、宋曜祥、张瑞华、魏小红

展开 >

兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,甘肃 兰州 730050

中国钢研科技集团有限公司,北京 100081

阳江市五金刀剪产业技术研究院,广东 阳江 529533

激光熔覆 温度场 显微组织 显微硬度

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(21)