首页|X射线荧光光谱结合随机森林实现刀片的检验识别

X射线荧光光谱结合随机森林实现刀片的检验识别

扫码查看
使用X射线荧光光谱仪对80种刀片样品各进行3次检测,获取240组光谱数据。首先,预处理后,以元素在样品间的相对标准差与3次检测的相对标准差均值之比为依据,选取Fe、Cr、Mn、Cu、Ni、Ti、Pb、Ca、Mo、Zn、Ga和Nb为特征元素。然后,对12种特征元素的数据进行Z-score标准化处理,消除元素间的量纲差异,再进行可视化分析和主成分分析。最后,使用经贝叶斯优化算法优化后的随机森林算法对80种样品进行分类识别,准确率达到95%,交叉验证的平均准确率为92。5%,标准差为1。02%。研究表明,X射线荧光光谱结合随机森林算法能有效实现样品准确识别,可用于追溯现场刀片物证的品牌和型号,从而为侦查破案提供线索。
Inspection and Identification of Blades Using X-Ray Fluorescence Spectroscopy Combined with Random Forest
X-ray fluorescence spectrometry is employed to conduct three tests on each of 80 blade samples,resulting in a total of 240-set spectral data.After preprocessing,feature elements are selected based on the ratio of the relative standard deviation of elements among samples to the mean relative standard deviation from three tests.These chosen feature elements included Fe,Cr,Mn,Cu,Ni,Ti,Pb,Ca,Mo,Zn,Ga,and Nb.Subsequently,data for 12 feature elements are subjected to Z-score standardization to eliminate dimensional differences among elements.Visual analysis and principal component analysis are then performed.Finally,a Bayesian-optimized random forest algorithm is employed for the classification and identification of these 80 samples,and it achieves an accuracy rate of 95%.Cross-validation results in an average accuracy of 92.5%with a standard deviation of 1.02%.Results of this research demonstrate that the combination of X-ray fluorescence spectrometry and the random forest algorithm can effectively achieve sample identification,provid a method by which to trace the brands and series of blade evidence from crime scenes,and offer valuable leads for investigative purposes.

X-ray fluorescence spectroscopyprincipal component analysisrandom forestcross-validation

张涛、李春宇、姜红、杨卓、田红丽、刘晓静、韩玮

展开 >

中国人民公安大学侦查学院,北京 100038

甘肃警察职业学院刑事侦查系,甘肃 兰州 730046

北京安科慧生科技有限公司,北京 101102

X射线荧光光谱 主成分分析 随机森林 交叉验证

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(21)