首页|多源数据特征融合的古城墙病害检测方法

多源数据特征融合的古城墙病害检测方法

扫码查看
城墙表面病害类型复杂多样且分布不均,光谱数据对具有空间相似性的病害识别准确率低.针对单一数据无法全面建立城墙表面复杂病害类别及严重程度特征表征的问题,提出一种多源数据特征融合的古城墙病害检测方法,分别构建独立的特征提取网络提取光谱与真彩数据源的空间-光谱特征与纹理-颜色特征,在每个卷积层后引入批归一化化层,加快网络收敛.通过特征融合模块将光谱数据与彩色数据多维度特征融合,在全连接层完成高级特征学习,通过线性整流函数将特征图映射到非线性空间,增加模型的非线性表达能力.构建基于对比损失与分类损失的联合损失函数对融合数据权重进行优化,提升对空间特征相似病害的区分度.最后利用Softmax层进行逐像素点分类,实现对古城墙病害情况的定量评估以及可视化分析.实验结果表明,所提方法的总体分类精度和Kappa系数为96.46%和94.20%,与光谱及真彩单一数据对比,分类精度分别提高了6.63百分点和12.05百分点.所提方法对于城墙复杂病害区域的识别以及病害分布可视化具有重要意义.
Disease Detection Method of Ancient City Wall Based on Multi-Data Feature Fusion
The types of surface diseases on city walls are complex and diverse,with uneven distribution.Spectral data has a low accuracy in identifying diseases with spatial similarity.Aiming at the problem that a single data cannot fully establish the classification and severity characteristics of complex surface diseases on city walls,a multi-data feature fusion method for ancient city wall disease detection is proposed.Independent feature extraction networks are constructed to extract spatial spectral features and texture color features from spectral and true color data sources,and batch normalization layers are introduced after each convolutional layer to accelerate network convergence.By using a feature fusion module to fuse multi-dimensional features of spectral data and color data,advanced feature learning is completed at the fully connected layer.The feature map is mapped to a nonlinear space through a linear rectification function,increasing the model's non-linear expression ability.Construct a joint loss function based on contrastive loss and classification loss to optimize the weights of fused data and improve the discrimination of diseases with similar spatial features.Finally,the Softmax layer is used for pixel by pixel classification to achieve quantitative evaluation and visual analysis of the damage situation of the ancient city wall.The experimental results show that the overall classification accuracy and Kappa coefficient of the proposed method are 96.46%and 94.20%,respectively.Compared with single spectral and true color data,the classification accuracy has been improved by 6.63 percentage points and 12.05 percentage points,respectively.The proposed method is of great significance for the identification of complex disease areas in city walls and the visualization of disease distribution.

multi-datafeature fusionancient city walldisease identification and detection

刘绪东、卢英、王慧琴、王可、王展、李源

展开 >

西安建筑科技大学信息与控制工程学院,陕西 西安 710055

陕西省文物保护研究院,陕西 西安 710075

西安博物院,陕西 西安 710074

多源数据 特征融合 古城墙 病害识别检测

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)