首页|基于双金字塔网络的航拍图像路面裂缝检测方法

基于双金字塔网络的航拍图像路面裂缝检测方法

扫码查看
无人机智能巡检是道路病害检测中较为先进的技术.为兼顾无人机航拍图像复杂背景与噪声干扰下路面裂缝检测精度与实时性的需要,提出一种基于双金字塔网络的航拍图像路面裂缝检测方法.使用改进MobileNetv3_small编码特征,轻量化网络;在跳跃连接时,设计了一种阶梯式的特征引导方式,结合混合域注意力机制组成3个不同尺度的特征金字塔融合网络,高效传递多尺度上下文特征;最后在网络深层设计并行尺度感知金字塔融合模块传递更多细节编码特征.此外,通过权重修正优化了focal损失和dice损失联合约束的效果,提高网络训练时对类别不平衡数据的处理能力.在自制数据集上的实验结果表明:这种双金字塔网络的F1分数与平均交并比分别达到87.51%和79.84%,对比CPFNet分别提升2.39百分点和3.47百分点,且模型参数量大幅降低,同时在CFD公开数据集上验证了该方法的性能和泛化性.
Detection Method of Pavement Cracks in Aerial Images Based on Double Pyramid Network
Unmanned aerial vehicle intelligent inspection is a relatively advanced technology in road disease detection.A road crack detection method based on a dual pyramid network is proposed to meet the needs of both accuracy and real-time detection of road cracks under complex backgrounds and noise interference in drone aerial images.Using improved MobileNetv3_small encoding features to lightweight the network.A stepped feature guidance method is designed for skip connections,combined with a mixed domain attention mechanism to form three different scale feature pyramid fusion networks,efficiently transmitting multi-scale contextual features.Finally,a parallel scale aware pyramid fusion module is designed deep in the network to transmit more detailed encoding features.In addition,the joint constraints of focal loss and dice loss are optimized through weight correction,improving the network's ability to handle imbalanced class data during training.The experimental results on a self-made dataset show that the F1 score and average intersection to union ratio of this double pyramid network reach 87.51%and 79.84%,respectively,which are 2.39 percentage points and 3.47 percentage points higher than CPFNet.The model parameter count is significantly reduced,and the performance and generalization of this method are verified on the CFD public dataset.

lightweightpyramid fusionattention mechanismcrack segmentationloss function

高明星、蒋正发、张林、王浩洋

展开 >

内蒙古农业大学能源与交通工程学院,内蒙古 呼和浩特 010000

内蒙古交通集团有限公司通辽分公司,内蒙古 通辽 028000

轻量化 金字塔融合 注意力机制 裂缝分割 损失函数

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)