首页|面向同轴封装金属底座缺陷的Metal-YOLO检测算法

面向同轴封装金属底座缺陷的Metal-YOLO检测算法

扫码查看
针对同轴封装金属底座缺陷检测中存在的检测精度不足、误检和漏检的问题,提出了一种基于YOLO v5s的改进模型,即Metal-YOLO检测算法.通过引入跨层特征增强连接(CFEC)显著增强模型对复杂小目标缺陷的表征能力,从而有效降低漏检率.为进一步提升模型对不同尺度缺陷特征的感知和判别能力,在模型中融入自适应注意力模块(AAM),有效减少背景信息的干扰.此外,针对完全交并比(CIoU)损失函数在缺陷目标框定位方面的不足,采用有效交并比(EIoU)损失函数,显著提升预测框的定位精度.实验结果表明,Metal-YOLO在金属表面缺陷检测任务中展现出卓越的性能,其召回率和平均精度均值分别达到 74.1%和 78.3%,相较于基准模型YOLO v5s分别提升了 5.0百分点和4.1百分点,显著提升了模型对金属表面缺陷的检测效果.
Metal-YOLO Detection Algorithm for Defects in Coaxial Packaged Metal Base
To resolve issues of insufficient detection accuracy,false detection,and missing detection in defect detection of coaxial packaged metal bases,this paper proposes an improved model called Metal-YOLO,which builds upon YOLO v5s.By introducing cross-layer feature enhancement connection(CFEC),the model ability to represent complex small object defects is substantially enhanced,effectively reducing the missing detection rate.To further improve the model ability to perceive and discriminate defect features across different scales,an adaptive attention module is integrated into the model,which effectively minimizes background information.Additionally,recognizing the shortcomings of the complete intersection over union(CIoU)loss function in the localization of defect object boxes,the effective intersection over union(EIoU)loss function is adopted.This change remarkably improves the precision of the prediction box positioning.Experimental results demonstrate that Metal-YOLO excels in metal surface defect detection tasks.Furthermore,the proposed model achieves a recall rate and mean average precision values of 74.1%and 78.3%,showing an improvement of 5.0 percentage points and 4.1 percentage points,respectively,compared to the baseline model YOLO v5s,substantially enhancing the effectiveness of metal surface defect detection.

machine visiondefect detectionYOLO algorithmcoaxial packaged metal base

张不凡、俞经虎、朱行飞、孙召飞、陆煜

展开 >

江南大学机械工程学院,江苏 无锡 214122

江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122

机器视觉 缺陷检测 YOLO算法 同轴封装金属底座

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)