首页|基于改进YOLOv8的光学元件体损伤点检测

基于改进YOLOv8的光学元件体损伤点检测

Bulk Damage Point Detection in Crystals Based on Improved YOLOv8

扫码查看
为提高数字图像处理算法对晶体体损伤点识别和计数的准确性,提出一种基于改进YOLOv8的晶体体损伤点检测(YOLOv8-OCD)算法.首先,针对晶体体损伤点非均匀分布的特点,在骨干网络中引入卷积块注意力模块(CBAM),使模型专注于损伤点密集区域,以提高模型的特征提取能力;其次,针对数量庞大的微小损伤点,设计小目标检测层,降低漏检率;最后,针对数据集中的一部分低质量实例,使用Wise-IoU损失函数,使模型聚焦于正常质量的标注实例,以提高模型检测精度.实验结果表明,相较于基准模型,改进后模型的平均精度均值为70%,提高了约3百分点,兼顾了检测精度与实时性.并通过消融实验和对比分析,验证了该方法的有效性和优越性.
To enhance the accuracy of identifying and counting bulk damage points in crystals,this paper proposes an improved crystal damage detection(YOLOv8-OCD)algorithm.Initially,to address the nonuniform distribution of bulk damage points in crystals,a convolutional block attention module was introduced into the backbone network;therefore,the model focused on regions with dense bulk damage,improving feature extraction capabilities.Next,to handle the abundant small bulk damage points,a small target detection layer was designed to reduce the false-negative rate.Finally,considering the presence of low-quality instances in the dataset,a Wise-IoU loss function was used.Consequently,the model focused on instances with normal quality,enhancing the detection accuracy.Results demonstrated that compared with the baseline model,the improved model achieved an average precision of approximately 70%,which was an improvement of approximately 3 percentage points.Thus,the improved model balanced the detection accuracy and real-time performance.The effectiveness and advantages of this approach were verified through ablation experiments and comparisons.

optical component damage imageYOLOv8multiscale detectionattention mechanism

冯浩杰、史晋芳、邱荣、周强、王建新、郭德成、汪晴

展开 >

西南科技大学制造科学与工程学院,四川 绵阳 621010

西南科技大学数理学院极端条件物质特性联合实验室,四川 绵阳 621010

光学元件损伤图像 YOLOv8 多尺度检测 注意力机制

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)