首页|LSNFS:高鉴别力和强鲁棒性的局部特征描述算法

LSNFS:高鉴别力和强鲁棒性的局部特征描述算法

扫码查看
为应对复杂场景中特征描述符鉴别力不足和鲁棒性较低的挑战,提出一种创新的局部细分邻域特征统计(LSNFS)描述符.LSNFS描述符的核心是一种名为曲面邻域偏差统计(SNDS)的高鉴别力方法.SNDS通过引入两种空间特征全面编码局部空间信息.在细分空间中统计加权邻域偏差角,并结合特定的属性分区策略,显著增强描述符的鉴别能力.对生成的SNDS直方图进行线性插值和归一化处理,提高描述符对噪声和点云分辨率变化的鲁棒性.LSNFS描述符通过计算两个角度特征来编码局部几何信息,并将生成的角度特征直方图与SNDS直方图融合,实现局部信息的充分描述.在6个具有不同质量和干扰类型的数据集上进行了大量的实验验证,结果表明:LSNFS在所有数据集上的性能明显优于现有的多种先进方法,具有较高的描述性和较强的鲁棒性.此外,将LSNFS应用于三维物体配准和真实场景配准,结果表明,LSNFS不仅在三维物体配准中实现了最好的配准性能,而且还能够泛化到大规模真实场景数据中,具有良好的泛化性能.
LSNFS:A Local Feature Descriptor Algorithm with High Discrimination and Strong Robustness
To address the challenges of insufficient discrimination and low robustness of feature descriptors in complex scenes,an innovative local subdivision neighborhood feature statistics(LSNFS)descriptor is proposed.The core of LSNFS descriptors is a highly discriminative method called surface neighborhood deviation statistics(SNDS).SNDS comprehensively encodes local spatial information by introducing two types of spatial features.Statistically calculating the weighted neighborhood deviation angle in the subdivided space,combined with specific attribute partitioning strategies,significantly enhances the discriminative ability of descriptors.Linear interpolation and normalization are performed on the generated SNDS histogram to improve the robustness of descriptors to noise and point cloud resolution changes.The LSNFS descriptor encodes local geometric information by computing two angle features,and fuses the generated angle feature histogram with the SNDS histogram to achieve sufficient description of local information.A large number of experimental verifications are conducted on six datasets with different quality and interference types,and the results show that LSNFS performed significantly better than various advanced methods on all datasets,with high descriptive and strong robustness.In addition,applying LSNFS to 3D object registration and real scene registration,the results show that LSNFS not only achieves the best registration performance in 3D object registration,but also can generalize to large-scale real scene data,with good generalization performance.

machine visionlocal feature descriptorpoint cloud registrationfeature descriptionfeature histogram

洪森达、程浩杰、许春晓、陈振鑫、王佳俊、赵凌霄

展开 >

中国科学技术大学生物医学工程学院(苏州)生命科学与医学部,安徽 合肥 230026

中国科学院苏州生物医学工程技术研究所,江苏 苏州 215162

机器视觉 局部特征描述符 点云配准 特征描述 特征直方图

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)