首页|基于线特征的激光雷达与相机外参标定

基于线特征的激光雷达与相机外参标定

扫码查看
提出一种基于线特征的激光雷达与相机外参标定方法.首先,通过比例-积分-微分网络(PIDNet)对图像进行粗分割,并使用图像后处理操作进行细分割得到图像线特征.然后,对点云数据进行聚类操作,使用强度、形态学等信息对聚类对象进行过滤,保留激光雷达点云中的线特征.接下来,针对图像线特征与激光雷达线特征的匹配程度构建匹配一致性函数.最后,通过最大化匹配一致性函数得到激光雷达和相机之间的外参.在真实车辆数据集上的实验结果表明,和基准方法相比,所提方法的标定误差更小,在旋转参数和平移参数上,平均误差分别减小了0.179°和0.2 cm,可以满足真实场景的标定精度要求.
External Parameter Calibration of Lidar and Camera Based on Line Feature
This paper proposes a external parameter calibration method for lidar and cameras based on line features.First,the image is coarsely segmented using the proportional-integral-derivative network,and the image line features are obtained through fine segmentation via image post-processing operation.Second,a clustering operation is performed on the point cloud data,and the clustered objects are filtered based on intensity,morphology,and other information to retain the line features in the lidar point cloud.Third,a matching consistency function is constructed to determine the degree of matching between the image and lidar line features.Finally,the external parameter between the lidar and the camera is obtained by maximizing the matching consistency function.Experiments on dataset collected by a real vehicle demonstrate that the proposed method has lower calibration errors compared to the benchmark method.Specifically,the proposed method reduces the average calibration error by 0.179° in rotation parameter and by 0.2 cm in translation parameter,meeting the average calibration accuracy requirements for real-world applications.

machine visionlidarcameraexternal parameter calibrationline feature

郑旺、于红绯、吕晋

展开 >

辽宁石油化工大学人工智能与软件学院,辽宁 抚顺 113000

东软睿驰汽车技术(沈阳)有限公司,辽宁 沈阳 110179

机器视觉 激光雷达 相机 外参标定 线特征

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)