首页|基于改进PointRCNN的激光雷达三维目标检测

基于改进PointRCNN的激光雷达三维目标检测

扫码查看
针对当前在点云三维(3D)目标检测算法中存在的误检率高、远处物体与较小物体检测效果差等问题,在PointRCNN算法的基础上提出一种改进的三维目标检测算法.在训练阶段的数据预处理方面,利用空间自相关算法对数据进行降维处理,有效去除无关点与噪声点,优化了网络对关键目标的特征提取和识别能力.提出了MGSA-PointNet模块对PointRCNN的点云编码网络进行改进,引入了流形自注意力以更精确地提取原始点云中空间结构信息,同时还融入了分组自注意力机制,旨在减少自注意力权重编码层的参数数量,从而提高了模型的效率和泛化能力,增强了网络的特征提取能力.本文改进算法与基准网络PointRCNN在KITTI数据集上的对比表明,对汽车与骑行者目标在困难场景下 3D检测的精度提升了 2.10百分点和 2.14百分点,对行人的 3D检测精度提升了 5.21百分点,证明了本文算法的有效性.
LiDAR 3D Object Detection Based on Improved PointRCNN
To solve the problems of high misdetection rates and the low detection precision of far and small objects with current three-dimensional(3D)object detection algorithms,an improved 3D object detection algorithm based on PointRCNN is proposed.The improved algorithm adopts the spatial autocorrelation algorithm in the preprocessing stage to reduce the dimension of data,effectively removes irrelevant and noisy points,and optimizes the network's ability to extract features and identify key objects.This study also proposes a module called MGSA-PointNet to improve the point cloud encoding network of PointRCNN.The module takes advantage of the manifold self-attention mechanism to extract spatial information in the original point cloud more accurately.It incorporates the grouping self-attention mechanism to reduce the parameter counts in the self-attention weight coding layer while improving the efficiency and generalization ability of the model and enhancing the feature extraction ability of the network.Compared with PointRCNN on the KITTI dataset,the proposed algorithm enhances the accuracy of the 3D detection of cars and cyclists in complex scenes by 2.10 percentage points and 2.14 percentage points,respectively,and improves the average accuracy of 3D pedestrian detection by 5.21 percentage points,thus proving the effectiveness of the algorithm.

three-dimensional object detectionpoint cloudPointRCNNdetection for small objectself-attention mechanism

高寒、陈颖、倪力政、邓修涵、钟凯、颜承志

展开 >

上海应用技术大学计算机科学与信息工程学院,上海 201418

三维目标检测 点云 PointRCNN 小目标检测 自注意力机制

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)