首页|低照度下基于图像增强和人脸状态识别的疲劳驾驶检测

低照度下基于图像增强和人脸状态识别的疲劳驾驶检测

扫码查看
针对现有的疲劳驾驶检测模型存在的精度低、模型体积较大且在低光环境下性能降低等问题,提出一种基于图像增强和人脸状态识别的疲劳驾驶检测模型.通过改进YOLOv5s模型进行低照度下人脸检测和关键点定位,并在YOLOv5s中引入self-calibrated illumination(SCI)模块对低照度图像进行图像增强.将下采样层替换为StemBlock模块,提高特征表达能力.将主干网络替换为ShuffleNetv2,大幅降低模型的参数量和计算量.引入cbam inverted bottleneck C3(CIBC3)模块以代替C3模块,降低噪声对检测的干扰并增强模型的全局感知能力.在总损失函数中,添加wing损失函数用于人脸关键点回归.之后,使用疲劳状态识别网络判断人脸检测模型定位到的眼嘴部位的开闭状态,最后采用评价指标判断疲劳状态.在DARK FACE数据集上的实验结果表明,对比基准模型YOLOv5s,改进后的YOLOv5s模型在参数量和计算量上分别下降62.12%、63.41%的同时精度提高2.38百分点.所提疲劳驾驶检测模型在YawDD正常光照数据集与自建低光照数据集上分别达到96.07%、94.50%的准确率,优于其他模型且单张图像处理时间仅为27 ms.这表明所提疲劳驾驶检测模型在保证正常环境与低光环境下的检测准确率的同时还能满足实时性要求,且具备部署在算力有限的边缘计算设备上的能力.
Fatigue Driving Detection Under Low Illumination Using Image Enhancement and Facial State Recognition
This study proposes a fatigue driving detection model based on image enhancement and facial state recognition to address the issues of low accuracy,large model size,and reduced performance in low-light environments found in existing models.The YOLOv5s model was enhanced for face detection and key point localization under low illumination,incorporating a self-calibrated illumination module to enhance low-illumination images.The downsampling layer was replaced with the StemBlock module to improve feature expression capability,and the backbone network was replaced with ShuffleNetv2 to reduce the model's parameters and computational complexity.Replacing the C3 module with the cbam inverted bottleneck C3(CIBC3)reduced noise interference in detection and enhanced the model's global perception ability.Furthermore,the wing loss function was added to the total loss function for facial keypoint regression.A fatigue state recognition network was employed to determine the opening and closing statuses of the eyes and mouth located by the face detection model,and evaluation indicators were used to determine the fatigue state.The experimental results obtained on the DARK FACE dataset demonstrate that,compared to the benchmark YOLOv5s model,the improved model reduced parameters and computational complexity by 62.12%and 63.41%,respectively,and improved accuracy by 2.38 percentage points.The proposed fatigue driving detection model achieved accuracies of 96.07%and 94.50%on the YawDD normal lighting and self-built low-lighting datasets,respectively,outperforming other models.The processing time per image was only 27 ms,demonstrating that the proposed model not only ensures detection accuracy in normal and low-light environments but also meets real-time requirements,making it suitable for deployment on edge computing equipment with limited computing power.

image processingfatigue driving detectionface state recognitionYOLOv5slightweight algorithm

赵洋、苗佳龙、刘雪枫、赵锦程、徐森

展开 >

沈阳化工大学计算机科学与技术学院,辽宁 沈阳 110142

辽宁省化工过程工业智能化技术重点实验室,辽宁 沈阳 110142

沈阳化工大学信息工程学院,辽宁 沈阳 110142

图像处理 疲劳驾驶检测 人脸状态识别 YOLOv5s 轻量化算法

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)