首页|无人机振动下惯性传感器辅助的图像运动去模糊

无人机振动下惯性传感器辅助的图像运动去模糊

扫码查看
在火灾、地震、爆炸等灾难环境中,无人机携带相机拍摄的图片会由于强烈振动而导致模糊,严重影响图像质量及紧急救援行动的效率.针对这一问题,提出一种基于无人机惯性传感器数据构建点扩散函数(PSF)的图像去模糊算法.该算法先利用惯性传感器捕获机载相机的运动信息,再根据这些信息推导PSF,从而有效规避传统算法在复杂纹理、低对比度或噪声等因素干扰时出现的问题,接着使用估计的PSF结合全变差正则化技术来复原图像.引入分裂Bregman迭代技术,将复杂的优化问题分解为一系列简单的子问题,从而加快计算速度,实现高精度图像去模糊.实验及仿真结果表明,所提算法能够有效恢复由于无人机振动导致的图像模糊,同时抑制伪影和振铃现象,显著提高无人机在振动下的成像质量.
Image Motion Deblurring Assisted by Inertial Sensors During Drone Vibration
In catastrophic environments such as fires,earthquakes,and explosions,images captured by drone cameras often become blurry because of strong vibrations.These vibrations severely affect the image quality and efficiency of emergency rescue operations.To address this issue,we propose an image deblurring method that uses unmanned aerial vehicle(UAV)inertial sensor data to construct the point spread function(PSF).The proposed method captures the motion information of an airborne camera using an inertial sensor and derives the PSF from this data,effectively overcoming the difficulties associated with traditional methods that consider complex textures,low contrast,or noise.The estimated PSF is combined with the total variation regularization technique to restore the images.By introducing the split Bregman iterative technique into the implemented algorithm,the complex optimization problem is effectively broken down into a series of simple sub-problems.This approach accelerates the calculation speed and yields high-precision image deblurring.Experimental and simulation results show that the proposed method effectively restores image blur caused by UAV vibrations,suppresses artifacts and ringing,and considerably improves the imaging quality of UAV cameras under vibration.

image deblurringinertial sensordrone vibrationtotal variation regularizationsplit Bregman

纪越、刘玉和、郭萃、李金义、宋丽梅

展开 >

天津工业大学控制科学与工程学院,天津 300387

天津工业大学天津市电气装备智能控制重点实验室,天津 300387

图像去模糊 惯性传感器 无人机振动 全变差正则化 分裂Bregman

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(22)